
CGEOMETRIC PROPERTIES OF
PLANE AREAS

C.1 FIRST MOMENTS OF AREA; CENTROID

Definitions. The solutions of most problems in this book involve one or more
geometric properties of plane areas4—area, centroid, second moment, etc. The total
area of a plane surface enclosed by bounding curve B is defined by the integral

A � �
A

dA (C-1)

which is understood to mean a summation of differential areas dA over two spatial
variables, such as y and z in Fig. C-1.

The first moments of the area A about the y and z axes, respectively, are
defined as

Qy � �
A

zdA, Qz � �
A

ydA (C-2)

Qy and Qz are called first moments because the distances z and y appear to the
first power in the defining integrals.

The centroid of an area is its ‘‘geometric center.’’ The coordinates (y, z) of the
centroid C (Fig. C-2) are defined by the first-moment equations

yA � �
A

ydA, zA � �
A

zdA (C-3)

For simple geometric shapes (e.g., rectangles, triangles, circles) there are closed-
form formulas for the geometric properties of plane areas. A number of these are
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4The word area is used in two senses: In one sense, the word refers to the portion of a plane surface
that lies within a prescribed bounding curve, like the area bounded by the closed curve B in Fig. C-1;
in the second sense, the word refers to the quantity of surface within the bounding curve [Eq. (C-1)].
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given in a table inside the back cover of this book.5 An area may possess one of
the three symmetry properties illustrated in Fig. C-3. If an area has one axis of
symmetry, like the vertical axis of the C-section in Fig. C-3a, the centroid of the
area lies on that axis. If the area has two axes of symmetry, like the wide-flange
shape in Fig. C-3b, then the centroid lies at the intersection of those axes. Finally,
if the area is symmetric about a point, like the Z-section in Fig. C-3c, the center of
symmetry is the centroid of the area.

Composite Areas. Many structural shapes are composed of several parts, each
of which is a simple geometric shape. For example, each of the areas in Fig. C-3
can be treated as a composite area made up of three rectangular areas. Since the
integrals in Eqs. (C-1) through (C-3) represent summations over the total area
A, they can be evaluated by summing the contributions of the constituent areas
Ai, giving

A � �
i

Ai, Qz � yA � �
i

yi Ai, Qy � zA � �
i

zi Ai (C-4)

Note that y in Fig. C-4 can be determined directly from the symmetry of the figure
about the z� axis.

COMPOSITE-AREA PROCEDURE FOR LOCATING THE CENTROID

1. Divide the composite area into simpler areas for which 3. Determine the area, A, using Eq. (C-4a).
there exist formulas for area and for the coordinates of 4. Calculate the coordinates of the composite centroid,
the centroid. (See the table inside the back cover.) (y, z), using Eqs. (C-4b, c).

2. Establish a convenient set of reference axes (y, z).
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Appendix C

5The reader may consult textbooks on integral calculus or statics for exercises in evaluating the integrals
in Eqs. C-1 through C-3 for specific shapes.
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E X A M P L E C-1

Locate the centroid of the L-shaped area in Fig. 1.

Solution A—Addition Method Following the procedure outlined
above, we divide the L-shaped area into two rectangles, as shown in Fig.
2. The y and z axes are located along the outer edges of the area, with
the origin at the lower-left corner. Since the composite area consists of
only two areas, the composite centroid, C, lies between C1 and C2 on
the line joining the two centroids, as illustrated in Fig. 2.

Area: From Eq. (C-4a),

A � A1 � A2 � (6t)(t) � (8t)(t) � 14t 2 (1)

Centroid: From Eqs. (C-4b) and (C-4c),

yA � y1A1 � y2 A2 � (t/2)(6t 2) � 5t(8t 2) � 43t 2

y �
43t 3

14t 2 �
43
14

t � 3.07t Ans. (2)

zA � z1A1 � z2 A2 � (3t)(6t 2) � (t/2)(8t 2) � 22t 3

z �
22t 3

14t 2 �
22
14

t � 1.57t Ans. (3)

Solution B—Subtraction Method Sometimes (although not in this par-
ticular example) it is easier to solve composite-area problems by treating
the area as the net area obtained by subtracting one or more areas from
a larger area. Then, in Eqs. (C-4), the Ai’s of the removed areas are
simply taken as negative areas. This method will now be applied to the
L-shaped area in Fig. 1 by treating it as a larger rectangle from which
a smaller rectangle is to be subtracted (Fig. 3). Area A1 is the large
rectangle PQRS; area A2 is the smaller unshaded rectangle. The compos-
ite centroid, C, lies along the line joining the two centroids, C1 and C2,
but it does not fall between them.
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Area: From Eq. (C-4a),

A � A1 � A2 � (9t)(6t) � [�(8t)(5t)] � 14t 2 (4)

Centroid: From Eqs. (C-4b) and (C-4c),

yA � y1A1 � y2 A2 � (4.5t)(54t 2) � [(5t)(�40t 2)] � 43t 3

y � 43t 3/14t 2 � 3.07t Ans. (5)

zA � z1A1 � z2 A2 � (3t)(54t 2) � [(3.5t)(�40t 2)] � 22t 3

z � 22t 3/14t 2 � 1.57t Ans. (6)

C.2 MOMENTS OF INERTIA OF AN AREA

Definitions of Moments of Inertia. The moments of inertia of a plane area
(Fig. C-5) about axes y and z in the plane are defined by the integrals

Iy � �
A

z2dA, Iz � �
A

y2dA (C-5)

These are called the moment of inertia with respect to the y axis and the moment
of inertia with respect to the z axis, respectively. Since each integral involves the
square of the distance of the elemental area dA from the axis involved, these
quantities are called second moments of area. These moments of inertia appear
primarily in formulas for bending of beams (see Chapter 6).

The moments of inertia defined in Eqs. (C-5) are with respect to axes that lie
in the plane of the area under consideration. The second moment of area about
the x axis, that is, with respect to the origin O, is called the polar moment of inertia
of the area. It is defined by

Ip � �
A

� 2dA (C-6)

Since, by the Pythagorean theorem, � 2 � y2 � z2, Ip is related to Iy and Iz by

Ip � Iy � Iz (C-7)
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Since Eqs. (C-5) and (C-6) involve squares of distances, Iy, Iz, and Ip are always
positive. All have the dimension of (length)4 � in4, mm4, etc.

A table listing formulas for coordinates of the centroid and for moments of
inertia of a variety of shapes may be found inside the back cover of this book. The
most useful formulas for moments of inertia and for polar moment of inertia are
derived here.

Moments of Inertia of a Rectangle: For the rectangle in Fig. C-6a, Eq. (C-5a) gives

Iy � �
A

z2dA � �h/2

�h/2
z2(bdz) � b

z3

3 �h/2

�h/2
�

bh3

12

where the y axis passes through the centroid and is parallel to the two sides of
length b. Iz may be derived in an analogous manner, so the moments of inertia of
a rectangle for the two centroidal axes parallel to the sides of the rectangle are:

Iy �
bh3

12
, Iz �

hb3

12
(C-8)

Polar Moment of Inertia of a Circle about its Center: Letting dA � 2��d�, the area
of the dark-shaded ring in Fig. C-6b, and using Eq. (C-6), we can determine the
polar moment of inertia of a circle about its center:

Ip � �
A

� 2dA � �r

0
� 2(2��d�) �

�r 4

2

Ip �
�r 4

2
�

�d4

32
(C-9)

Radii of Gyration. A length called the radius of gyration is defined for each
moment of inertia by the formulas

ry � �Iy

A
, rz � �Iz

A
(C-10)

These lengths are used to simplify several formulas in Chapters 6 and 10. If these
formulas are written in the form

I � Ar 2
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then it is clear that the radius of gyration is the distance at which the entire area
could be concentrated and still give the same value I, of moment of inertia about
a given axis.

Parallel-Axis Theorems for Moments of Inertia. Let the (y, z) pair of axes
be parallel to centroidal axes (yC, zC), as shown in Fig. C-7. The centroid, C, is
located with respect to the (y, z) axes by the centroidal coordinates (y, z). Since,
from Fig. C-7, z � z � zC, the moment of inertia Iy is given by

Iy � �
A

z2dA � �
A

(z � zC)2dA

� z 2A � 2z �
A

zCdA � �
A

z2
CdA

Iy � z 2A � IyC
(C-11a)

The term �AzCdA vanishes since the yC axis passes through the centroid; the term
IyC

is the centroidal moment of inertia about the yC axis. The z 2A term is the moment
of inertia that area A would have about the y axis if all of the area were to be
concentrated at the centroid. Since this term is always zero or positive, the centroidal
moment of inertia is the minimum moment of inertia with respect to all parallel axes.

By the same procedure that was used to obtain Eq. (C-11a), we get

Iz � y 2A � IzC
(C-11b)

Equations C-11 are called parallel-axis theorem for moments of inertia.
As a simple example of calculations based on the parallel-axis theorem, let us

determine the moment of inertia of the rectangle in Fig. C-8 about the y� axis along
an edge of length b. From Eq. (C-11a),

Iy� � (z�)2A � IyC
� �h

2�2

(bh) �
bh3

12
�

bh3

3
(C-12)

In a similar manner, a parallel-axis theorem for the polar moment of inertia
may be derived. From Eq. (C-6) and Fig. C-7, the polar moment of inertia about
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point O is

IpO
� �

A
� 2dA � �

A
(y2 � z2)dA

� �
A

[(y � yC)2 � (z � zC)2]dA

� �
A

(y 2 � 2yyC � y2
C � z 2 � 2zzC � z2

C)dA

IpO
� � 2A � IpC

(C-13)

since y 2 � z 2 � � 2, �A yCdA � �A zCdA � 0, and �A(y2
C � z2

C)dA � IpC
. Note that

Eq. (C-13) follows easily from Eq. (C-7) and Eqs. (C-11).

Moments of Inertia of Composite Areas. The moments of inertia of a
composite area, like the one in Fig. C-4, may be computed by summing the contribu-
tions of the individual areas:

Iy � �
i

(Ay)i, Iz � �
i

(Iz)i (C-14)

As an efficient procedure for calculating moments of inertia of composite areas,
the following is suggested.

COMPOSITE-AREA PROCEDURE FOR CALCULATING SECOND MOMENTS

1. Divide the composite area into simpler areas for which 3. Employ Eqs. (C-11) to compute the moments of inertia
there exist formulas for centroidal coordinates and mo- of the constituent areas with respect to the (y, z) axes
ments of inertia. (See the table inside the back cover.) and Eq. (C-14) to sum them.

2. Locate the centroid of each constituent area and establish
centroidal reference axes (yC, zC) parallel to the given
(y, z) axes.

The next example problem illustrates this procedure.

E X A M P L E C-2

Determine the centroidal moment of inertia Iy for the L-shaped section
in Example C-1. (Here, in Fig. 1, the origin of the (y, z) reference frame
is at the centroid of the composite area. The centroidal reference axes
for the rectangular ‘‘legs’’ of the L-shaped area are (y1, z1) and (y2,
z2), respectively.)

Solution We can combine Eqs. (C-14) with the parallel axis theorems,
Eqs. (C-11), to compute the required moments of inertia.

Iy � (Iy)1 � (Iy)2 � [(IyC
)1 � A1z 2

1] � [(IyC
)2 � A2z 2

2] (1)

where (Iyc
)i is the moment of inertia of area Ai about its own centroidal

y axis, and zi is the z-coordinate of the centroid Ci measured in the (y,
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z) reference frame with origin at the composite centroid, C. Referring
to Fig. 1, we get

Iy � (Iy)1 � (Iy)2

� � 1
12

(t)(6t)3 � (t)(6t) �3t �
22
14

t�2	
� � 1

12
(8t)(t)3 � (t)(8t) �1

2
t �

22
14

t�2	
� 18t 4 �

600
49

t 4 �
2
3

t 4 �
450
49

t 4

�
842
21

t 4 � 40.1t 4 Ans. (2)

C.3 PRODUCT OF INERTIA OF AN AREA

Definition of Product of Inertia. Another geometric property of plane areas
is called the product of inertia, which is defined by (refer to Fig. C-1)

Iyz � �
A

yzdA (C-15)

The product of inertia is required in the study of bending of unsymmetric beams
(Section 6.6).

As an example, let us determine the product of inertia of a rectangular area
with respect to two sets of axes (Fig. C-9).

From Eq. (C-15) and Fig. C-9(a),

Iyz � �
A

yz dA � �h

0
�b

0
yz dy dz �

b2h2

4
(C-16)

Now consider the product of inertia with respect to the (y�, z�) axes in Fig.
C-9b. The y� axis is an axis of symmetry, and it passes through the centroid C. As
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is clear from Fig. C-9b, when either reference axis is an axis of symmetry of the
area, like the y� axis in this figure, the product of inertia is zero, since

Iy�z� � �
A

y�z� dA

and, because of symmetry (since y�2 � y�1, but z�2 � �z�1), the contributions of dA1

and dA2 to the integral cancel each other. Therefore,

Iyz � 0 (C-17)

if either the y axis or the z axis is an axis of symmetry of the area.

Parallel-Axis Theorem for Product of Inertia of an Area. The procedure
used to derive parallel-axis theorems for moments of inertia, leading to Eqs. (C-11)
and (C-13), may be applied to derive a parallel-axis theorem for products of inertia.
From Eq. (C-15) and Fig. C-7,

Iyz � �
A

yz dA � �
A

(y � yC)(z � zC) dA

� yzA � y �
A

zC dA � z �
A

yC dA � IyCzC

Therefore, since yC and zC are coordinates in a centroidal reference frame, the
parallel-axis theorem for products of inertia of an area is

Iyz � yzA � IyCzC
(C-18)

Just as for the moments of inertia, Iyz has one term that represents the product of
inertia of an area A concentrated at the centroid, plus a centroidal product of inertia
IyCzC

.

Product of Inertia for Composite Areas. The summations for moments of
inertia in Eqs. (C-14) are readily extended to the product of inertia of an area
composed of several constituent areas:

Iyz � �
i

(Iyz)i (C-19)

E X A M P L E C-3

For the L-shaped area in Example C-2, use the composite-area procedure
to determine the centroidal product of inertia, Iyz. (Note: Here the
(y, z) reference frame is a centroidal reference frame for the whole area;
(y1, z1) and (y2, z2) are centroidal reference frames for the constituent
areas A1 and A2, respectively.) The centroid product of inertia relative
to the (y, z) axes is given by

Iyz � (Iy1z1
� A1y1z1) � (Iy2z2

� A2 y2z2)

A-15
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It is very important to note that y1, z1, etc., are signed values, that is,
some of them could be negative. By Eq. (C-17), Iy1z1

� Iy2z2
� 0. Therefore,

Iyz � A1y1z1 � A2 y2z2

� (6t 2) ��
43
14

t �
1
2

t��3t �
22
14

t�
� (8t 2) �5t �

43
14

t���
22
14

t �
1
2

t�
or

Iyz � �
270

7
t 4 Ans.

Note that, since the centroid C1 lies in the second quandrant and C2 lies
in the fourth quadrant, both A1 and A2 make negative contributions to Iyz.

C.4 AREA MOMENTS OF INERTIA ABOUT INCLINED AXES;
PRINCIPAL MOMENTS OF INERTIA

In some applications, especially in unsymmetric bending of beams (Section 6.6), it
is necessary to determine the moments and products of inertia relative to inclined
axes (y�, z�) when Iy, Iz, and Iyz are known. The coordinate transformation relating
coordinates (y�, z�) to coordinates (y, z) can be deduced from Fig. C-10.

The angle � is measured positive counterclockwise from y to y� (and z to z�).

y� � y cos � � z sin �
(C-20)

z� � �y sin � � z cos �
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From Eqs. (C-5), (C-15), and (C-20),

Iy� � �
A

(z�)2 dA � �
A

(�y sin � � z cos �)2 dA

Iy�z� � �
A

y�z� da � �
a
(y cos � � z sin �)(�y sin � � z cos �) dA

(C-21)

Expanding each of the above integrands and recognizing that �A y2 dA � Iz, and
so forth, we get

Iy� � Iy cos2 � � Iz sin2 � � 2Iyz sin � cos �

Iy�z� � (Iy � Iz) sin � cos � � Iyz(cos2 � � sin2 �)

These equations may be simplified by using the trigonometric identities sin 2� �
2 sin � cos � and cos 2� � cos2 � � sin2 �. Thus,

Iy� �
Iy � Iz

2
�

Iy � Iz

2
cos 2� � Iyz sin 2�

(C-22)

Iy�z� �
Iy � Iz

2
sin 2� � Iyz cos 2�

Note the similarity between these equations and the stress-transformation equa-
tions, Eqs. 8-5.6

Principal Moments of Inertia. From Eqs. (C-22) it may be seen that Iy� and
Iy�z� depend on the angle �. We will now determine the orientations of the y� axis
for which Iy� takes on its maximum and minimum values. The axes having these
orientations are called the principal axes of inertia of the area, and the corresponding
moments of inertia are called the principal moments of inertia. To each point O in
an area, there is a specific set of principal axes passing through that point. The
principal axes that pass through the centroid of the area, called the centroidal
principal axes, are the most important. The orientations of the centroidal principal
axes for several unequal-leg angles are given in Appendix D.6.

The moment of inertia Iy� will have a maximum, or minimum, value if the y�
axis is oriented at an angle � � �p that satisfies the equation

dIy�

d�
� �2 �Iy � Iz

2 � sin 2� � 2Iyz cos 2� � 0

Therefore,

tan 2�p �
�Iyz

�Iy � Iz

2 � (C-23)

Figure C-11 illustrates how to use the tangent value given by Eq. (C-23) to
determine the angles �p. There are two distinct angles that satisfy Eq. (C-23). As
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illustrated by Fig. C-11, these two values of 2�p, labeled 2�p1
and 2�p2

, differ by 180�,
so the principal axes are oriented at 90� to each other (as they must be).

From Fig. C-11, the hypotenuse of either of the shaded triangles is given by

R � ��Iy � Iz

2 �2

� I 2
yz (C-24)

Also, from Fig. C-11, the angles 2�p1
and 2�p2

satisfy

sin 2�p1
�

�Iyz

R
, cos 2�p1

�

�Iy � Iz

2 �
R

(C-25a)

sin 2�p2
�

Iyz

R
, cos 2�p2

�

� �Iy � Iyz

2 �
R

(C-25b)

Substituting these sines and cosines into the equation for Iy�, Eq. (C-22a), we get
the following expressions for the two principal moments of inertia:

Imax 
 Ip1
�

Iy � Iz

2
� ��Iy � Iz

2 �2

� I 2
yz (C-26)

Imin 
 Ip2
�

Iy � Iz

2
� ��Iy � Iz

2 �2

� I 2
yz

If Eqs. (C-25a) or Eqs. (C-25b) are substituted into Eq. (C-22b), it is found that

Ip1p2
� 0 (C-27)

That is, the product of inertia with respect to the principal axes of inertia is equal
to zero.

By adding Eqs. (C-26a) and (C-26b) we get

Ip1
� Ip2

� Iy � Iz (C-28)

Thus, the sum of the moments of inertia about any pair of mutually perpendicular
axes passing through a given point in a given plane is a constant.

E X A M P L E C-4

For the L-shaped area in Fig. 1 of Example C-2, (a) Determine the
orientation of the centroidal principal axes and show the orientation on
a sketch. (b) Determine the principal moments of inertia.

Iy �
5894
147

t 4 � 40.10t 4, Iz �
33,103

294
t 4 � 112.60t 4

Iyz �
�270

7
t 4 � �38.57t 4
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Solution (a) From Eq. (C-23),

tan 2�p �
�Iyz

�Iy � Iz

2 ��

� ��270
7 �

11,788 � 33,103
2(294)

� �1.064

2�p1
� 133.22�, 2�p2

� �46.78�

Then, as illustrated in Fig. 1,

�p1
� 66.6�, �p2

� �23.4� Ans.

(b) From Eq. (C-26a),

Ip1
�

Iy � Iz

2
� ��Iy � Iz

2 �2

� I 2
yz

�
40.10t 4 � 112.60t 4

2
� ��40.10t 4 � 112.60t 4

2 �2

� (�38.57t 4)2

� 129.28t 4

or

Ip1
� 129.3t 4 Ans.

Similarly, from Eq. (C-26b),

Ip2
� 23.4t 4 Ans.

Mohr’s Circle for Moments and Products of Inertia. Equations (C-22)
have the same basic form as Eqs. 8.5, which were used to develop Mohr’s circle
for stress.7 Therefore, by a procedure that is virtually identical to that in Section
8.5, it can be shown that a Mohr’s circle plotted as in Fig. C-12 can be used to
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7There is a difference between the signs preceding the �xy-type terms in Eqs. 8.5 and the signs preceding
the corresponding Iyz-type terms in Eqs. (C-22). Thus, for Mohr’s circle for moments and products of
inertia, the Iy�z� axis is positive upward, not positive downward, as it was for Mohr’s circle for stress.

Fig. 1
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Y(Iy, Iyz)

Y ′(Iy′, Iy′z′)

Z(Iz, –Iyz)

Iy′

Iy′z′

FIGURE C-12 Mohr’s cir-
cle for moments and products
of inertia.



compute Iy� and Iy�z� for any (y�, z�) axes located at angle � counterclockwise from
the given (y, z) axes. And the Mohr’s circle provides a convenient way to calculate
the orientation of the principal axes of inertia and the principal moments of inertia,
Ip1

and Ip2
, given moments of inertia Iy and Iz and the corresponding product of

inertia Iyz. To an angle � measured counterclockwise (or clockwise) on the planar
area A, there corresponds an angle 2� measured counterclockwise (or clockwise)
on Mohr’s circle.

The following procedure will facilitate your calculation of moments and prod-
ucts of inertia with respect to rotated axes.

MOHR’S-CIRCLE PROCEDURE FOR MOMENTS AND PRODUCTS OF INERTIA

1. Establish a set of Mohr’s-circle axes (Iy�, Iy�z�), as shown 4. Point Y�, located at angle 2�y� counterclockwise from the
in Fig. C-12. (Note that the positive Iy�z� axis is counter- line CY, as shown in Fig. C-12, locates the point whose
clockwise 90� from the Iy� axis, unlike the �nt axis for coordinates are (Iy�, � Iy�z�).
Mohr’s circle of stress in Chapter 8.) 5. Points P1 and P2 locate the two principal axes at 2�p1

and
2. Plot points Y:(Iy, � Iyz) and Z:(Iz, � Iyz), respectively. 2�p2

, respectively, as shown in Fig. C-12. The principal
moments of inertia are Ip1

and Ip2
, which are also given3. Draw a straight line joining points Y and Z. The intersec-

by Eqs. (C-26).tion of the Y Z line with the Iy� axis is the center of the
Mohr’s circle passing through points Y and Z.

E X A M P L E C-5

(a) Draw the Mohr’s circle for the centroidal moments and products of
inertia for the L-shaped area in Fig. 1 of Example C-2, given that:

Iy �
5894
147

t 4 � 40.10t 4, Iz �
33,103

294
t 4 � 112.60t 4

Iyz �
�270

7
t 4 � �38.57t 4
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50t4

50t4

76.35t4 36.25t4

P2

Ip2
 = 23.4t4

P1

C

R = 52.93t4

Z(112.60t4, 38.57t4)

Y(40.10t4, –38.57t4)

2θzp1 
(clockwise)

100t4

–50t4

Ip1
 = 129.3t4

Iy′z′

Iy′

Fig. 1 Mohr’s circle for centroidal inertias of an L-shaped area.



(b) Use the Mohr’s circle constructed in Part (a) to compute the principal
moments of inertia Ip1

and Ip2
and to locate the principal axes. Show the

orientation of the principal axes on a sketch.

Solution (a) Sketch Mohr’s circle and calculate the principal moments
of inertia. Points Y and Z are plotted and Mohr’s circle is then drawn
(Fig. 1). From the circle,

Iavg. �
40.10t 4 � 112.60t 4

2
� 76.35t 4

R � ��112.60t 4 � 40.10t 4

2 �2

� (38.57t 4)2 � 52.93t 4

Ip1
� Iavg. � R � 129.3t 4

Ans. (a)
Ip2

� Iavg. � R � 23.4t 4

(b) Determine the orientation of the principal axes and show them on
a sketch.

tan �2�zp1
� �

38.57t 4

�112.60t 4 � 40.10t 4

2 �� 1.064

Therefore, 2�zp1
� 46.78� (clockwise), so

�zp1
� �yp2

� 23.4� clockwise Ans. (b)

Note that the orientations of the principal axes in Fig. 2 are such
that the contributions to Ip1p2

of the areas in the four quadrants cancel
out, giving Ip1p2

� 0.

The results obtained from Mohr’s circle are the same as those obtained by the
use of formulas in Example C-4. However, mistakes are less likely to be made if
Mohr’s circle is carefully drawn and it is recalled that an angle 2� on Mohr’s circle
corresponds to an angle � on the planar area A, and that angles are taken in the
same sense on Mohr’s circle as on the planar area.

MDS6.1 Beam Cross-Sectional Properties—Section Properties is an MDS com-
puter program module for calculating section properties of plane areas: area, loca-
tion of centroid, moments of inertia, product of inertia, orientation of principal
axes, etc., properties that are defined and illustrated in Appendix C. The Section
Properties module is closely linked with the Flexure module.
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z p1
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θzp1 = 23.4° (clockwise)

Fig. 2 Principal axes of inertia.


