STRAIN-LIFE

2.1 INTRODUCTION

The strain-life method is based on the observation that in many components the
response of the material in critical locations (notches) is strain or deformation
dependent. When load levels are low, stresses and strains are linearly related.
Consequently, in this range, load-controlled and strain-controlled test results are
equivalent. (Recall from Chapter 1 that stress-life data are generated from
load-controlled tests.) At high load levels, in the low cycle fatigue (LCF) regime,
the cyclic stress—strdin response and the material behavior are best modeled
under strain-controlled conditions.

Early fatigue research showed that damage is dependent on plastic
deformation or strain. In the strain-life approach the plastic strain or deforma-
tion is directly measured and quantified. As discussed in Chapter 1, the stress-life
approach does not account for plastic strain. At long lives, where plastic strain is
negligible and stress and strain are easily related, the strain-life and stress-life
approaches are essentially the same.

Although most engineering structures and components are designed such
that the nominal loads remain elastic, stress concentrations often cause plastic
strains to develop in the vicinity of notches. Due to the constraint imposed by the
elastically stressed material surrounding the plastic zone, deformation at the
notch root is considered strain-controlled. The strain-life method assumes that
smooth specimens tested under strain-control can simulate fatigue damage at the
notch root of an engineering component. Equivalent fatigue damage (and fatigue
life) is assumed to occur in the material at the notch root and in the smooth
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specimen when both are subjected to identical stress—strain histories. As seen in
Fig. 2.1, the laboratory specimen models an equally stressed volume of material
at the notch root.

Crack growth is not explicitly accounted for in the strain-life method.
Rather, failure of the component is assumed to occur when the “equally stressed
volume of material” fails. Because of this, strain-life methods are often
considered ‘“‘initiation” life estimates. For some applications the existence of a
crack is an overly conservative criterion for component failure. In these
situations, fracture mechanics methods may be employed to determine crack
propagation life from an assumed initial crack size to a final crack length. Total
lives are then reported as the sum of the initiation and propagation segments. The
fracture mechanics approach is presented in Chapter 3.

The local strain—life approach has gained acceptance as a useful method of
evaluating the fatigue life of a notched component. Both the American Society
for Testing and Materials (ASTM) and the Society of Automotive Engineers
(SAE) have recommended procedures and practices for conducting strain-
controlled tests and using these data to predict fatigue lives [1-5].

Fatigue life predictions may be made using the strain—life approach with the
following information:

1. Material properties obtained from smooth specimen strain-controlled labo-
ratory fatigue data (cyclic stress—strain response and strain-life data)

2. Stress—strain history at the critical location (e.g., at a notch)

3. Techniques for identifying damaging events {cycle counting)

4. Methods to incorporate mean stress effects

5. Damage summation technique (e.g., Miner’s rule)

In this chapter we review the necessary material behavior background
needed for an understanding of the strain-life approach. Fundamental equations
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used in the strain-life method are presented, as well as modified equations to
account for mean stress effects. Techniques to identify damaging events and to
sum damage (items 3 and 5 above) are presented in Chapter 5. Fatigue analysis of
notches using the strain-life approach is discussed in Chapter 4.

2.2 MATERIAL BEHAVIOR
2.2.1 Monotonic Stress—Strain Behavior

Basic definitions. A monotonic tension test of a smooth specimen is
usually used to determine the engineering stress—strain behavior of a material
where

P
= engineering stress = — 2.1
0

. : . L—1, Al
¢ = engineering strain = ——— = R
0 0

2.2)
The following terms are shown in Fig. 2.2:
applied load
= original length
= original diameter
= original area
instantaneous length
instantaneous diameter

= instantaneous area

a 4P

: )

Y2

(o}

s

2

\J

¢ Figure 2.2 Original and deformed (in-
P stantaneous) configuration of test
Original Instantaneous  specimen.
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In tension the true stress is larger than the engineering stress, due to changes in
cross-sectional area during deformation.

P
o = true stress = 1 (2.3)

Similarly, until necking occurs in the specimen, true strain is smaller than
engineering strain. True or natural strain, based on an instantaneous gage length
1, is defined as
L dl l
g P
1o l lo
Figure 2.3 compares the monotonic tension stress—strain curve using true
stress and strain and the engineering values.

€ = true strain = 2.4

True and engineering stress—strain. True stress and strain can be
related to engineering stress and strain. The instantaneous length is

Combining Egs. (2.4) and (2.5), the true strain is
ly + Al
a2
l()

+ %) 2.7

From Eq. (2.2) the true strain in terms of engineering strain is
€ = In(l + e) (2.8)

€e=1 (2.6)

Neckiynq Occurs X
Failure

True Stress, o

w

Engineering Stress, S

E=AS/Ae

éP — é‘e S

Engineering Strain, e
True Strain, €

Figure 2.3 Comparison of engineering and true stress—strain.
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Equation (2.8) is only valid up to necking. At necking the strain is no longer
uniform throughout the gage length.
Assuming that the volume of the material remains constant during straining,
ha
we ve A()l() = Al = constant (29)
Restating gives
Lol 210
A Iy ( -10)
True strain can be stated in terms of cross-sectional area
€ =In—=In—
I 2 (2.11)
From Eq. (2.1),
P =S4, ' (2.12)

and since

o= (2.3)

true stress can be stated in terms of engineering stress:

U—é) 2.1
- (2.13)

Combining Egs. (2.8) and (2.11) (valid only up to necking) gives us

A
e=1In(l +e¢) = 1nZ° (2.14)

/—1(—)=1+e 2.15
" (2.15)

Therefore, true stress can be stated as a function of engineering stress and strain
using Egs. (2.13) and (2.15).

o=81+e) (2.16)

This relation is valid only up to necking.

Stress—strain relationships. The total true strain €, in a tension test can
be separated into elastic and plastic components:

1. Linear elastic strain: that portion of the strain which is recovered upon
unloading, €,
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2. Plastic strain (nonlinear): that portion which cannot be recovered on
unloading, €, (see Fig. 2.4)

Stated in equation form,
Et = Ee + Ep (2. 17)

For most metals a log-log plot of true stress versus true plastic strain is modeled
as a straight line. Consequently, this curve can be expressed using a power
function

o = K(e,)" (2.18)

e, = (%)m (2.19)

where K is the strength coefficient and n is the strain hardening exponent.

At fracture two important quantities can be defined (see Fig. 2.3). These are
true fracture strength and true fracture ductility. True fracture strength, o, is the
true stress at final fracture.

_ 5

O =
f A
f

(2.20)
where A, is the area at fracture and P is the load at fracture.

True fracture ductility, €, is the true strain at final fracture. This value can
be defined in terms of the initial cross-sectional area and the area at fracture.

1

l.___
"T-RaA

(2.21)

= reduction in area
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The strength coefficient, K, can be defined in terms of the true stress at fracture,
or, and the true strain at fracture, €r
Substituting oy and €, into Eq. (2.18) yields

or = K(e )" (2.22)

Rearranging gives

k=2 (2.23)
€r

We can also define plastic strain in terms of these quantities. Combining Egs.
(2.23) and (2.19), we have
1/n
- (=% ) (2.24)

oy/ €}
n\ i/n
= <ﬂ> (2.25)
Oy

(2

¢ <—) " (2.26)

Oy
The total strain can be expressed as

€ =€ + €, (2.17)

The elastic strain is defined as

&2.27)

€, =

g
E
The expression for plastic strain is given in Eq. (2.19). Equation (2.17) may then
be rewritten as

i/n
6 =24 <3> (2.28)

TET\K

2.2.2 Cyclic Stress—Strain Behavior

Monotonic stress—strain curves have long been used to obtain design parameters
for limiting stresses on engineering structures and components subjected to static
loading. Similarly, cyclic stress—strain curves are useful for assessing the
durability of structures and components subjected to repeated loading.

The response of a material subjected to cyclic inelastic loading is in the form
of a hysteresis loop, as shown in Fig. 2.5. The total width of the loop is A€ or the
total strain range. The total height of the loop is Ao or the total stress range.
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Figure 2.5 Hysteresis loop.
These can be stated in terms of amplitudes:

Ae

6(1
2

where €, is the strain amplitude and

8o

OH
2

where g, is the stress amplitude. The total strain is the sum of the elastic and
plastic strain ranges,

Ae = Ae, + Ag, (2.29)

or in terms of amplitudes,

Ae Ae, Ag,
2 -2 "2 (2:30)

Using Hooke’s law, the elastic term may be replaced by Ao/E.

Ac_ Ao Ac, -
2 2E 2 (2.31)

The area within the loop is the energy per unit volume dissipated during a cycle.
It represents a measure of the plastic deformation work done on the material.

The Bauschinger effect [6] is usually observed in most metals. This effect is
described graphically in Fig. 2.6. Shown in Fig. 2.6a is the material response of a
bar loaded past the yield strength, o,, to some value, Onax. In Fig. 2.6b, the
material is unloaded and then loaded in compression to —0,.«. Notice that under
compressive loading, inelastic (plastic) strains develop before —o, is reached.
This behavior is known as the Bauschinger effect.
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(b) Figure 2.6 Bauschinger effect,

2.2.3 Transient Behavior: Cyclic Strain Hardening
and Softening

The stress—strain response of metals is often drasticall

y altered due to repeated
loading. Depending on the initial conditions of a

metal (i.e., quenched and
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Figure 2.7 Cyclic hardening: (a) constant strain amplitude; (b) stress response
(increasing stress level); (c) cyclic stress—strain response.

tempered, or annealed) and the test conditions, a metal may:

1. Cyclically harden
2. Cyclically soften
3. Be cyclically stable
4.

Have mixed behavior (soften or harden depending on the strain range)

Figure 2.7b shows the stress response of a material loaded in strain-control.
Figure 2.7c shows the hysteresis loops for the first two cycles. As seen, the
maximum stress obtained increases with each cycle of strain. This is known as
strain hardening. Conversely, if the maximum stress decreases with repeated
straining, strain softening occurs as shown in Fig. 2.8.

The reason materials soften or harden appears to be related to the nature
and stability of the dislocation substructure of the material [7]. Generally:

1. For a soft material, initially the dislocation density is low. The density
rapidly increases due to cyclic plastic straining contributing to significant
cyclic strain hardening.

2. For a hard material subsequent strain cycling causes a rearrangement of
dislocations which offers less resistance to deformation and the material
cyclically softens.

Manson [8] observed that the ratio of monotonic ultimate strength, oy, to
the 0.2% offset yield strength, o,, can be used to predict whether the material
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Figure 2.8 Cyclic softening: (a) constant strain amplitude; (b) stress response
(decreasing stress level); (c) cyclic stress—strain response.

will soften or harden. If

ou . . .
t'>14 the material will cyclically harden

< 1.2 the material will cyclically soften

2024-T4
Aluminum

€
~1% 4340 (350 BHN)
Steel

(d)

(a)

7075-T6

Aluminim

{(b)

Man - Ten

Steel Figure 2.9 Cyclic and monotonic
{(c) stress—strain curves. (From Ref. 9.)
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A large change in cyclic response is not expected for ratios between 1.2 and 1.4
and prediction is difficult. Also, the monotonic strain hardening exponent, n, can
be used to predict the material’s cyclic behavior. In general, if

n > 0.20 the material will cyclically harden

n<0.10 the material will cyclically soften

Generally, transient behavior (strain hardening or softening) occurs only
during the early fatigue life. After this, the material achieves a cyclically stable
condition. This is usually achieved after approximately 20 to 40% of the fatigue
life. Consequently, fatigue properties are usually specified at “half-life” (ap-
proximately 50% of the total fatigue life) when the material response is stabilized.

Figure 2.9 presents the cyclic and monotonic stress—strain curves for several
materials. Figure 2.10 presents the hysteresis response of OFHC copper in three
conditions.

A comparison between the monotonic and cyclic stress-strain curve
provides a quantitative assessment of cyclically induced changes in mechanical
behavior. As shown in Fig. 2.9e, a material that cyclically softens will have a
cyclic yield strength lower than the monotonic. This points out the potential
danger of using monotonic properties to predict cyclic strains. For example,
monotonic properties may predict strains that are fully elastic, when in fact the
material may experience large amounts of cyclic plastic strain.

2.2.4 Cyclic Stress—Strain Curve Determination

Cyclic stress—strain curves may be obtained from tests by several methods. Two
of these are:

1. Companion samples. A series of companion samples are tested at various
strain levels until the hysteresis loops become stabilized. The stable
hysteresis loops are then superimposed and the tips of the loops are
connected as shown in Fig. 2.11. This method is time consuming and
requires many specimens.

Cyclic Stress-
Strain Curve

Figure 2.11 Cyclic stress—strain curve
obtained by connecting tips of stabilized
hysteresis loops.
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Figure 2.12 Incremental step test. (Data from Ref. 11.)
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2. Incremental Step Test. This method has become widely accepted, as it is
very quick and produces good results. One specimen is subjected to a series
of blocks of gradually increasing and decreasing strain amplitude. After a
few blocks the material stabilizes. For example, for the test shown in Fig.
2.12, the loading block contains 20 cycles per half-block. The material
response generally stabilizes after about three to four blocks and fails after
approximately 20. The cyclic stress—strain curve can then be determined by
connecting the tips of the stabilized hysteresis loops.

After the incremental step test, if the specimen is pulled to failure, the
resulting stress—strain curve will be nearly identical to the one obtained by
connecting the loop tips.

Knowing the cyclic stress—strain curve, use of Massing’s hypothesis [12]
allows the stabilized hysteresis loop to be estimated for a material that exhibits
symmetric behavior in tension and compression. (The hysteresis loop of gray cast
iron, for example, exhibits a different response in tension and compression, as
shown in Fig. 2.13.)

oA

Stobnthd
;Hys'feresuS
| Curve

Stabilized Cyclic I
Stress~Strain |
Curve ;
i
|
13

0.004
(b)

/

Stabilized
Hysteresis
Loop

Ne= OOO4
(c)

Figure 2.14 Development of stabilized hysteresis curve from cyclic stress—strain
curve using Massing’s hypothesis.
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Massing’s hypothesis states that the stabilized hysteresis loop may be
obtained by doubling the cyclic stress—strain curve. By doubling the stress and
strain value from the stabilized cyclic stress—strain curve, a corresponding point
on the hysteresis loop is obtained as shown in Fig. 2.14. For example, by doubling
the values corresponding to point A on the cyclic stress—strain curve in Fig. 2.14a,
point B on the hysteresis loop (Fig. 2.14b) is obtained. Figure 2.14c shows the
hysteresis loop for a fully reversed test. Note the location of point 0 on the
hysteresis curve in Fig. 2.14b and c.

2.3 STRESS-PLASTIC STRAIN POWER LAW RELATION

Analogous to the monotonic stress—strain curve, a log-log plot of the completely
reversed stabilized cyclic true stress versus true plastic strain can be approximated
by a straight line as shown in Fig. 2.15.

Similar to the monotonic relationship, we can develop a power law function

o=K'(,)" (2.32)

where o = cyclically stable stress amplitude
cyclically stable plastic strain amplitude
cyclic strength coefficient
= cyclic strain hardening exponent

For most metals the value of n' usually varies between 0.10 and 0.25, with an
average value close to 0.15.
Rearranging Eq. (2.32) gives us

o i/n’
€, = (F) (2.33)

The total strain is the sum of the elastic and plastic components. Using Eq.
(2.33) and Hooke’s law, the total strain can be written

o o i/n’
€=—+ <-—> (2.34)

E K

=X

Log Scale
o

€p Figure 2.15 Log-log plot of true cyclic
Log Scale stress versus true cyclic plastic strain.
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The equation of the hysteresis loop can be derived from the equation of the
cyclic o—€ curve [Eq. (2.34)] using Massing’s hypothesis. Recall that Massing’s
hypothesis allows us to obtain the hysteresis loop by doubling the cyclic
stress—strain curve as shown in Fig. 2.14. Given an arbitrary point, P;, on the
cyclic stress—strain curve, as shown in Fig. 2.16a, the corresponding values of
stress and strain are o, and €, respectively. These values, o, and €,, are related
by the equation of the cyclic o—€ curve. Equation (2.34) may be written

1/n’
€ = %} + (%) (2.35)

From Massing’s hypothesis a point corresponding to P, may be located on the
hysteresis curve as shown in Fig. 2.16b. The coordinates of this point are Ao, and
Ae,;, where

AU] = 201
A61 = 261
Rearranging these equations, we obtain

%_(, S‘_f_l_E
2 ! 2 !

5
{oy,€,)

Stabilized Cyclic
Stress-Strain Curve

Py

Stabilized
Hysteresis
Curve

Aoy =20
Ne, =2¢,

Figure 2.16 Stabilized cyclic stress—
strain and hysteresis curves.
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These can then be substituted into Eq. (2.35) to obtain the equation of the
hysteresis loop:
Aa_ Aoy, (Ao

2 2E  \2K'

Multiplying both sides by 2, the general hysteresis curve equation is

Ao Ao\
Ae =22, 2( )
€ 2K’

= (2.36)

(Since this equation was derived for an arbitrary point, P;, the subscripts may be
omitted.)

The relationship between the hysteresis stress—strain curve and the cyclic
stress—strain curve can be made clearer with the following example.

Example 2.1
Consider a test specimen with the following material properties:

E = modulus of elasticity = 30 x 10’ ksi

'

n' = cyclic strain hardening exponent = 0.202
K’ = cyclic strength coefficient = 174.6 ksi

The specimen is subjected to a fully reversed cyclic strain with a strain range, A€, of
0.04. Determine the stress—strain response of the material.

Solution Figure E2.1a shows the strain history. On the initial application of strain
(point 1) the material response follows the cyclic stress—strain curve [Eq. (2.34)]:

01 + <01>l/n'
€ = - -
'TE K’

Substituting in the material properties and a strain value of 0.02 gives

0.02 g

1/0.202
- 1 + < g )
30 x 10° ksi 174.6 ksi

o

771 ksi

Ne=004

Y

(a) (b)

Figure E2.1 (a) Strain history; (b) stress—strain response.
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The stress value at point 1 may be determined by solving this equation by iteration.
As shown in Fig. E2.1b, this yields

g, = 77.1ksi

The cyclic stress—strain curve is used only for the initial application of strain.
On all successive strain reversals, the material response is modeled using the

hysteresis curve [Eq. (2.36)]:
tn'

Substituting in the material properties and a change in strain, Ae, of 0.04 gives

0.04 =

Ao Ao 1/0.202
+
30 x 10° ( >

2 X 174.6
The change in stress can be obtained by using an iterative method:
Ao = 154.2 ksi

The stress and strain values corresponding to point 2 can now be determined by
subtracting the changes in stress and strain (Ao, Ae€) from the values at point 1
(01, €1).
€, = €, — A€

0.02 - 0.04

-0.02

g, — Ao

(77.1 — 154.2) ksi

—77.1 ksi

(Note: The actual algebraic sign of the changes in stress and strain must be
accounted for by considering the sign of the change in applied strain.)

The stress and strain values corresponding to point 3 can be determined by
again using the hysteresis curve. The solution would show that the material response
would return to point 1. As expected, the material response forms a closed
hysteresis loop and all successive strain cycles would follow this loop.

Two points need to be considered concerning Example 2.1. First is the
response of the material on the initial application of load or strain. In the solution
of the problem it was assumed that the material response would follow the cyclic
stress—strain curve. There is justification to an alternative approach which says
that the response would follow the monotonic stress—strain curve. This argument
states that the material response of a virgin material follows the monotonic
stress—strain curve. Most fatigue life predictions are not greatly affected by which
approach is used.

The second point that needs to be considered is that this analysis assumes
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that the material exhibits cyclically stable response from the initial loading. An
exact analysis would account for the cyclically hardening or softening characteris-
tics of the material. This type of analysis is very difficult and time consuming. It
also requires that material properties be available to model this transient
of strain. ‘ behavior. In general, there appears to be no significant effects on life predictions
1sing the . when this transient behavior is ignored.

The recommended procedure is to use the cyclic stress—strain curve to
model material behavior on the initial load cycle and cyclically stable material
properties during the entire analysis.

iteration.

2.4 STRAIN-LIFE CURVE

In 1910, Basquin [14] observed that stress-life (S—N) data could be plotted
linearly on a log—log scale. Using the true stress amplitude, the plot may be
linearized by

mined by Ao b
it point 1 = of(2Ny) (2.37)

Ao .
where - true stress amplitude

2N; = reversals to failure (1rev = 3 cycle)
o; = fatigue strength coefficient
b = fatigue strength exponent (Basquin’s exponent)

o; and b are fatigue properties of the material. The fatigue strength coefficient,
of, is approximately equal to the true fracture strength, o, The fatigue strength
exponent, b, will usually vary between —0.05 and —0.12.
. must be Coffin [15] and Manson [16], working independently in the 1950s, found that
plastic strain—life (¢, — N) data could also be linearized on log-log coordinates.
rmined by Again, plastic strain can be related by a power law function
il response
Ae,

i a closed = €4 (2N;)° (2.38)

h € . . .
st is the where wf plastic strain amplitude
€ solution 2N; = reversals to failure
the cyclic €; = fatigue ductility coefficient
C ¢ = fatigue ductility exponent

€/ and ¢ are also fatigue properties of the material. The fatigue ductility

which ‘ coefficient, €, is approximately equal to true fracture ductility, €, The fatigue
ductility exponent, ¢, varies between —0.5 and —0.7.

An expression may now be developed that relates total strain range to life to
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failure. As discussed with reference to Eq. (2.30), the total strain is the sum of
the elastic and plastic strains. In terms of strain amplitude [repeating Eq. (2.30)],

Ae Ae, Ag,
—— " + —il
2 2 2

The elastic term can be written as

(2.30)

fe _ 4o 2.39
2 2E (2.39)

Using Eq. (2.37) we can now state this in terms of life to failure:

Ae,
2

= i’Ei'(sz)b (2.40)

From Eq. (2.38) the plastic term is

Ae )
—23 = €/(2N;)° (2.38)

Using Eq. (2.30), the total strain can now be rewritten using Egs. (2.38) and

o; , .
= —E—f (2N;)? + €/(2N;) (2.41)

elastic plastic

Ae
2

Equation (2.41) is the basis of the strain-life method and is termed the strain—life
relation. :

Equation (2.41) can be explained graphically. Recalling that the elastic and
plastic relations are both straight lines on a log-log plot, the total strain
amplitude, A€/2, can be plotted simply by summing the elastic and plastic values
as shown in Fig. 2.17. At large strain amplitudes the strain—life curve approaches
the plastic line, and at low amplitudes, the curve approaches the elastic line.

Totol = Elastic and Plastic

Elastic
Plastic

107
Figure 2.17  Strain-life curve.
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In Fig. 2.17, the transition fatigue life, 2N,, represents the life at which the
elastic and plastic curves intersect. Note that this is the life at which the stabilized
hysteresis loop has equal elastic and plastic strain components. By equating
elastic and plastic terms the following expression is derived for the transition life:

Ae,_ Ag
2 2

o} , .
-Ei (2N,)? = €/(2Ny) at N; = N,

1\ U(b—c
2N, (ﬁ) ) (2.42)
O

A schematic representation of the shape of the hysteresis loop at different
lives is shown in Fig. 2.18 in relationship to the transition life. As seen, at shorter
lives more plastic strain is present and the loop is wider. At long lives the loop is
narrower, representing less plastic strain.

As shown in Fig. 2.19, the transition life of steel decreases with increasing
hardness.

As the ultimate strength of the material increases, the transition life
decreases, and elastic strains dominate for a greater portion of the life range.

Figure 2.20 presents the strain-life curves for a medium carbon steel in two
different heat treated conditions. The material in a normalized (soft) ductile
condition has a transition life of 90,000 cycles, while the material in a quenched
(high strength) condition has a transition life of 15 cycles. As shown, for a given
strain the high strength material (quenched) provides longer fatigue lives in the
high cycle regime. At short lives or high strains the ductile (normalized) material
exhibits better fatigue resistance.

S

Z Total

Strain Steels

Elastic

Strain Plastic
Strain

Log Scale
2Ny

i

2Nt ' 2N¢ ] ! | 1
Reversals to Failure 100 600

(Log Scale) BHN

Figure 2.18 Shape of the hysteresis curve in Figure 2.19 Relationship between transi-
relation to the strain-life curve. (From tion life and hardness for steels. (From
Ref. 17.) Ref. 17.)
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Figure 2.20  Strain-life curves for a medium carbon steel in a quenched and
normalized condition.

The optimum material would be one that has both high ductility and high
strength. Unfortunately, there is usually a trade-off between these two properties
and a compromise must be made for the expected load or strain conditions being
considered.

Note that life to failure may be defined in several ways. These include:

1. Separation of specimen
2. Development of given crack length (often 1.0 mm)
3. Loss of specified load carrying capability (often 10 or 50% load drop)

Specimen separation is the most common failure criteria for uniaxial
loading. However, in many cases, there is not a large difference in life between
these criteria.

The strain-life equation as stated in Eq. (2.41) does not predict the
endurance limit behavior seen in some metals. When the endurance limit
behavior is significant, the methods described in Chapter 1 should be used.

Before continuing it is worthwhile to consider the ““factor of 2” problem
found in the strain-life analysis. There are three cases where it is very easy to
lose track of a factor of 2 and cause errors in a strain-life fatigue analysis. All of
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Sec. 2.5 Determination of Fatigue Properties

these cases have been discussed earlier, but to reemphasize, they are:

1. Cycles versus reversal. The strain—life approach measures life in terms of
reversals (2N), whereas the stress—life method uses cycles (N). A reversal is
one-half of a full cycle.

2. Amplitude versus range. The strain-life approach uses both strain range,
Ae, and amplitude, €,, which differ by a factor of 2 (i.e., Ae/2 = ¢,).

3. Cyclic o—€ curve versus hysteresis curve. Massing’s hypothesis states that
the hysteresis curve can be modeled as twice the cyclic stress—strain curve.

Although the preceding points may seem trivial to some, it is the experience
of the authors that the “factor of 27 phantom can cause extreme hardship for the
unwary.

2.5 DETERMINATION OF FATIGUE PROPERTIES

The strain-life equation [Eq. (2.41)] requires four empirical constants
(b, c, 0f, €f). Several points must be considered in attempting to obtain these
constants from fatigue data.

1. Not all materials may be represented by the four-parameter strain-—life
equation. (Examples of these are some high strength aluminum alloys and
titanium alloys.)

The four fatigue constants may represent a curve fit to a limited number of
data points. The values of these constants may be changed if more data
points are included in the curve fit.

The fatigue constants are determined from a set of data points over a given
range. Gross errors may occur when extrapolating fatigue life estimates
outside this range.

The use of power law relationships in Eqgs. (2.32), (2.37), and (2.38) is
strictly a matter of mathematical convenience and is not based on a physical
phenomenon.

From Egs. (2.34) and (2.41) the following properties may be related:
i
(E})"'

b (2.44)
C

K' = (2.43)

Although these relationships may be useful, K’ and »’ are usually obtained from
a curve fit of the cyclic stress—strain data using Eq. (2.32). Due to the
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approximate nature of the curve fits, values obtained from Egs. (2.32), (2.43),
and (2.44) may not be equal.

Fatigue properties may be approximated from monotonic properties.
Currently, due to the available data, these techniques are no longer used
extensively. Nevertheless, the following approximate methods may be useful.

Fatigue strength coefficient, 6;. A fairly good approximation is
of = 0f (corrected for necking) (2.45)
For steels with hardnesses below 500 BHN:
o = S, + 50 ksi (2.46)

Fatigue sirength exponent, b. b varies from —0.05 to —0.12 for most
metals with an average of —0.085. (Note that this corresponds to the approximate
slope of the S—N curve discussed in Section 1.2.)

Fatigue ductility coefficient, €;. A fairly good approximation is

€ = ¢ (2.47)

1

where €, = lnm

where RA is the reduction in area.

Fatigue ductility exponent, c. ¢ is not as well defined as the other
parameters. A rule-of-thumb approach must be followed rather than an empirical
equation.

" Coffin found ¢ to be about —0.5.
Manson found ¢ to be about —0.6.
Morrow found that ¢ varied between —0.5 and —0.7.

Fairly ductile metals (where: €, =~ 1) have average values of ¢ = —(0.6. For
strong metals (where: €, =~ 0.5) a value of ¢ = —0.5 is probably more
reasonable.

Example 2.2

Given below are the monotonic and cyclic strain-life data for smooth steel
specimens. Determine the cyclic stress—strain and  strain-life constants
(K', n’, of, b, €, ¢) for this material.

Monotonic data

= 158 ksi E = 28.4 x 10*ksi
= 168 ksi o; = 228 ksi

52 € = 0.734
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(2.43), ‘ Smooth Specimen-Cyclic Data

erties. i Total Strain Stress Amplitude, Plastic Strain Reversals to
used . Amplitude, Ae/2 - Ao /2 (ksi) Amplitude, Ae, /2" Failure, 2N;

ul. ~ 0.0393 162.5 0.0336 50
0.0393 162 0.0336 68

0.02925 155 0.0238 122

~ 0.01975 143.5 0.0147 256

(2.45) 0.0196 143.5 0.0145 350
0.01375 136.5 0.00894 488

~ 0.00980 130.5 0.00521 1,364

(2.46) . 0.00980 126.5 0.00534 1,386
0.00655 121 0.00229 ‘ 3,540

r most ; 0.00630 119 0.00211 3,590
ximate ~ 0.00460 114 0.00059 9,100
‘ 0.00360 106 0.00000 35,200

0.00295 84.5 0.00000 140,000

(2.47)

Solution Determine the fatigue strength coefficient, of, and the fatigue strength
exponent, b, by fitting a power law relationship to the stress amplitude, Ao/2,
versus reversals to failure, 2N;, data.

~ Ao
other f 2
apirical ‘

= g;(2N;)’

Determine the fatigue ductility coefficient, €;, and the fatigue ductility
exponent, ¢, by fitting a power law relationship to the plastic strain amplitude,
A€, /2, versus reversals to failure, 2N,, data.

Ae, ¢
2’ = ef(ZNf)

The curve fits to the strain-life data are shown in Fig. E2.2. The resulting cyclic

0 Total Strain
O Elostic Strain
¢ Plastic Strain

ith steel
'onstants

Strain Amplitude, Ae/2

! ] I
ot 102 1wd 1t 100 107
Reversals to Failure, 2N, Figure E2.2 Strain-life curve.
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properties are
o = 222 ksi b= -0.076
€ = 0.811 c=-0.732

Determine the cyclic strength coefficient, K', and the cyclic strain hardening
€xponent, n’. These can be found using two different procedures. First, these terms
can be found by fitting a power law relationship to the stress amplitude, Ag/2,
versus plastic strain amplitude, Ae,/2, data.

0= K'(e,)”
If this is done, the resulting values are
K' = 216 ksi n' = 0.094

These terms may also be determined using the relationships stated in Eqgs. (2.43) and
) (2.44).
folas /‘3 (\é‘lDS’V K’ Gf ;

(€

e

e’
Using these relationships, the resulting values are

K' = 227 ksi n' = 0.104

Note the difference between the predictions for K’ and n' found using the two
different methods. In general, the first procedure (curve fit) is the preferred method.

For comparison purposes the following table lists the strain-life constants
determined from strain-life data and the values found using the approximations
discussed in Section 2.5 [Egs. (2.45) and (2.47)]. Note the difference between these
values.

Determined from Determined Using
Value Strain-Life Data Approximations

222 228

~0.076 —0.085
0.811 0.734

-0.732 —-0.6

2.6 MEAN STRESS EFFECTS

Cyclic fatigue properties of a material are obtained from completely reversed,
constant amplitude strain-controlled tests. Components seldom €xperience this
type of loading, as some mean stress Of mean strain is usually present. The effect
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Sec. 2.6 Mean Stress Effects

Compressive Mean Stress

Fully Reversed (zero mean stress) Mark E. Barkey

Tensile Mean Stress Theoretical and
Applied Mechanics

Log Ae/2

Figure 2.21 Effect of mean stress on
Log 2N¢ strain—life curve.

of mean strain is, for the most part, negligible on the fatigue life of a component.
Mean stresses, on the other hand, may have a significant effect on the fatigue life.

Mean stress effects are seen predominantly at longer lives. They can either
increase the fatigue life with a nominally compressive load or decrease it with a
nominally tensile value, as shown schematically in Fig. 2.21.

At high strain amplitudes (0.5% to 1% or above), where plastic strains are
significant, mean stress relaxation occurs and the mean stress tends toward zero
(see Fig. 2.22.) Note that this is not cyclic softening. Mean stress relaxation can
occur in materials that are cyclically stable.

C 4

Figure 2.22 Mean stress relaxation.
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~——— NO Mean Stress
——~ Tensile Mean Stress

Log Scale
DNe/2
mi_
~

Figure 2.23 Morrow’s mean stress cor-
rection to the strain-life curve for a
Log Scale tensile mean.

Modifications to the strain-life equation have been made to account for
mean stress effects. Morrow [18] suggested that the mean stress effect could be
taken into account by modifying the elastic term in the strain-life equation [Eq.
(2.41)] by the mean stress, o,.

Aee*Ao_a}-oo b
2 T g (2Ny) (2.48)

The strain-life equation, accounting for mean stresses is, then,

B _ %= %ony g H2N, ) (2.49)
_ 2 E
This is shown graphically in Fig. 2.23. The predictions made with this equation
are consistent with the observations that mean stress effects are significant at low
values of plastic strain, where the elastic strain dominates. They also reflect the
trend that mean stresses have little effect at shorter lives, where plastic strains are
large.

Equation (2.49), though, incorrectly predicts that the ratio of elastic to
plastic strain is dependent on mean stress. This is clearly not true, as
demonstrated in Fig. 2.24. The two smaller hysteresis loops have the same strain
range and the same ratio of elastic to Plastic strain, while they have vastly
different mean stresses.

Manson and Halford [19] modified both the elastic and plastic terms of the
strain-life equation to maintain the independence of the elastic—plastic strain
ratio from mean stress. This equation,

Ae o

2

is shown graphically in Fig. 2.25. (Note that the transition life remains constant.)
This equation tends to predict too much mean stress effect at short lives or where
plastic strains dominate. At high plastic strains, mean stress relaxation occurs.

-0 or — g,\
TN+ () (2.50)
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oA

stress cor-

: for a
Figure 2.24 Independence of

elastic/plastic strain ratio from mean
stress. (Note that in this figure the
:count for ‘ plastic strain portion of the small hyster-
- could be ; . e Ae, esis loops has been exaggerated for

ation [Eq. clarity.)

Although Eq. (2.49) violates the constitutive relationship, it generally does a
better job predicting mean stress effects.

Smith, Watson, and Topper (SWT) [20] have proposed another equation to
account for mean stress effects. Recalling Eq. (2.37), for completely reversed
loading

(2.48)

~ Ao
(249) i Omax = 7

s equation ; and multiplying the strain-life equation by this term, results in

= 0;(2N;)* (2.51)

ant at low Ae 0})2

reflect the Omax (2N;)?* + opej(2N,)0*e

X E
strains are
For application of this equation, the term 0,,,, is evaluated as
elastic to Ao
true, as Opnax = -5 + 0,
ame strain .
ave vastly

- NO Mean Stress
— - — Tensile Mean Stress
rms of the

istic strain

Log Scale
Ne/2

(2.50)

Figure 2.25 Mean stress correction for
independence of elastic/plastic strain
Log Scale ratio from mean stress.
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Since this equation is in the general form
VOmax A€ x N (2.54)

it becomes undefined when Omax 18 megative. The physical interpretation of this
approach assumes that no fatigue damage occurs when o,,,, < 0.

The mean stress equations above are empirically based. Therefore, care
must be taken when they are used outside the ranges from which they were
developed.

2.7 IMPORTANT CONCEPTS

Cyclic response of a material often differs from monotonic response. For
instance, a soft material usually strain hardens and a hard material usually
strain softens.

Fatigue properties, oy, €, b, ¢, n’, and K ', are curve fit to the
experimental data and must be used for the range of life from which they
were determined.

Tensile mean stresses are detrimental to fatigue life, while compressive
mean stresses are beneficial.

At high strain levels, cyclic plastic strains tend to cause the mean stresses to
relax to zero.

Three cases where it is easy to lose a factor of 2 are:

a. Cycles versus reversals

b. Amplitude versus range

¢. Cyclic stress—strain curve versus hysteresis curve

2.8 IMPORTANT EQUATIONS

Power Relationship between Stress and Plastic Strain
o= K(eg,)"

Strain Hardening Exponent

n = slope of log o vs. loge, or n = In(1 + e at necking)

Strength Coefficient

k=%

n

€f




(2.54)
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Sec. 2.8 Important Equations

Total Strain = Elastic Strain + Plastic Strain

o O,l/n
€, = €, p=E+ E

Strain and Stress Amplitude

_ Ae
T2

_ Ao
)

Ae = A€, + Ag,
Ae Ao Ae,
— =4 =t
2 2E 2

€,

O

Cyclic Stress—Plastic Strain Relationship
o= K'(g,)"

Cyclic Stress—Total Strain Relationship

o o n’
= — o | —
*TE (K)

Hysteresis Curve

Strain-Life Relationship

Ae

of , .
7= E(sz)b + €:2Ny)

(S— [ —
elastic plastic

Transition Life

’

1 o\ H(b—c)
efE>
Oy

2N,=<

Cyclic Strength Coefficient

!

O
(efl)n’

’
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Cyclic Strain Hardening Exponent

I3

n =

b
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2.1.  During the initial stages of a tension test of an engineering material, the engineering
est. Mater. stress and strain (S, e) were determined to be 62.2 ksi and 0.0098. Later, after some
plastic deformation had occurred, the engineering stress and strain were determined
i a Ductile to be 90.8 ksi and 0.0898. Calculate the true stress and strain (o, €) values at these
two points. Discuss the relationship between the engineering and true values as
. Heat plastic strain increases.

lite, 1953, ‘ A cylindrical bar of structural steel with an initial diameter of 50 mm is loaded in
tension. (Note: The general behavior of structural steel in a tension test is shown in
ent Fig. 2.3.) The following deflection measurements are made over a 250-mm gage




