FRACTURE
MECHANICS

3.1 INTRODUCTION
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Y . Figure 3.1 Initiation and propagation

Fatigue Life (log scale) portions of fatigue life.

proaches for the analysis of notched components and in Chapter 5 discuss fracture
mechanics approaches used to predict fatigue crack growth under variable
amplitude loading.

3.2 LINEAR ELASTIC FRACTURE MECHANICS BACKGROUND

Linear elastic fracture mechanics (LEFM) principles are used to relate the stress
magnitude and distribution near the crack tip to:

« Remote stresses applied to the cracked component
o The crack size and shape
« The material properties of the cracked component

3.2.1 Historical Overview

In the 1920s, Griffith [1] formulated the concept that a crack in a component will
propagate if the total energy of the system is lowered with crack propagation.
That is, if the change in elastic strain energy due to crack extension is larger than
the energy required to create new crack surfaces, crack propagation will occur.

Griffith’s theory was’developed for brittle materials. In the 1940s, Irwin [2]
extended the theory for ductile materials. He postulated that the energy due to
plastic deformation must be added to the surface energy associated with the
creation of new crack surfaces. He recognized that for ductile materials, the
surface energy term is often negligible compared to the energy associated with
plastic deformation. Further, he defined a quantity, G, the strain energy release
rate or “crack driving force,” which is the total energy absorbed during cracking
per unit increase in crack length and per unit thickness.

In the mid-1950s, Irwin [3] made another significant contribution. He
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showed that the local stresses near the crack tip are of the general form

oy = —\/% fi(8) + -+ 3.1

where r and 8 are cylindrical coordinates of a point with respect to the crack tip
(see Fig. 3.2) and K is the stress intensity factor. He further showed that the
energy approach (the “(” approach above) is equivalent to the stress intensity
approach (described in Section 3.2.4) and that crack propagation occurs when a
critical strain energy release rate, G, (or in terms of a critical stress intensity, K.)
is achieved.

3.2.2 LEFM Assumptions

Linear elastic fracture mechanics (LEFM) is based on the application of the
theory of elasticity to bodies containing cracks or defects. The assumptions used
in elasticity are also inherent in the theory of LEFM: namely, small displacements
and general linearity between stresses and strains.

The general form of the LEFM equations is given in Eq. (3.1). As seen, a
singularity exists such that as r, the distance from the crack tip, tends toward
zero, the stresses go to infinity. Since materials plastically deform as the yield
stress is exceeded, a plastic zone will form near the crack tip. The basis of LEFM
remains valid, though, if this region of plasticity remains small in relation to the
overall dimensions of the crack and cracked body.

3.2.3 Loading Modes

There are generally three modes of loading, which involve different crack surface
displacements (see Fig. 3.3). The three modes are:

Mode I:  opening or tensile mode (the crack faces are pulled apart)

Mode II:  sliding or in-plane shear (the crack surfaces slide over each
other)

Mode III:  tearing or anti-plane shear (the crack surfaces move parallel to
the leading edge of the crack and relative to each other)
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Mode I Mode IL Mode I ]
Opening Mode  Sliding Mode Teoring Mode  Figure 3.3 Three loading modes.

The following discussion deals with Mode 1 since this is the predominant
loading mode in most engineering applications. Similar treatments can readily be
extended to Modes II and III. Equations and additional details are found in Refs.
4 10 6.

3.2.4 Stress Intensity Factor

The stress intensity factor, K, which was introduced in Eq. (3.1), defines the
magnitude of the local stresses around the crack tip. This factor depends on
loading, crack size, crack shape, and geometric boundaries, with the general form
given by

K = f(g)oVna (3.2)

where ¢ = remote stress applied to component [not to be confused with the
local stresses, oy, in Eq. (3.1)]
a = crack length
f(g) = correction factor that depends on specimen and crack geometry

Stress intensity factor solutions have been obtained for a wide variety of
problems and published in handbook form [7-9]. Figure 3.4 gives the stress
intensity relationships for a few of the more common loading conditions.

Stress intensity factors for a single loading mode can be added algebraically.
Consequently, stress intensity factors for complex loading conditions of the same
mode can be determined from the superposition of simpler results, such as those
readily obtainable from handbooks.

One superposition method, the compounding technique, has been used to
obtain relatively accurate approximations. The technique consists of reducing a
complicated problem into a number of simpler configurations with known
solutions. By superposition of these simpler K solutions, a stress intensity factor
may be obtained for the complicated geometry. In equation form,

Ko = Ky + [gl (K, ~ KO)] + K, (3.3)
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Figure 3.4  Stress intensity factor for (a) Center-cracked plate loaded in tension (from Ref.
10), (b) Edge-cracked plate loaded in tension (from Ref. 11), (¢) Double-edge-cracked
plate loaded in tension (from Ref. 12), (d) Cracked beam in pure bending (from Ref. 12),
(e) Circular (penny shaped) crack embedded in infinite body subjected to tension (from
Ref. 13), () Elliptical crack embedded in infinite body subjected to tension (from Ref.

14-15).
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Top View at Plane A-A

(e)

Figure 3.4 (Continued)

1/b)?
! where K, = stress intensity factor for complicated geometry
K, = stress intensity factor in the absence of all boundaries of a
form applicable to the loading (i.e., K; = oVa)
K, = stress intensity factor for the nth simpler configuration
K, = factor that accounts for the effect of the interaction between
boundaries
M : K, is the only unknown. Neglecting this term will lead to underestimates of less

than 10% [16]. References 17 to 21 give more details of this approach.
Another approximate method is simply to multiply the individual correction
factors for the various geometric effects, such as

K=fi-ffs oVna (3.4)

Correction factors, f;, are used to account for

®4140(a/p)**
+ Finite width (back wall) effect

1 Ref. |  Front wall effect

?Cke)d ‘ « Crack shape (i.e., elliptical flaw)
. 12),

(from

Other superposition methods that are employed include the alternating method

Ref.
e and the weight function method [22-26].
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Figure 3.4 (Continued)

In determining K, numerical methods (including finite element methods)
have been widely used in recent years. In fact, many commercially available finite
element computer programs include subroutines to calculate K. References 27 to
33 review numerical techniques used to determine K.

Determination methods for K tend to be approximate. In general, values for
f(g) in Eq. (3.2) tend to be between 1 and 1.4, with the value for many
engineering situations being between 1 and 1.2. Errors in K may be small
compared to uncertainties in a fatigue analysis, such as material properties, load
levels, load history, and service environment.
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Example 3.1

As discussed in this section, an approximate method to obtain the stress intensity
factor for a complicated geometry is simply to approximate the geometric correction
factor by the product of the individual correction factors for the various geometric
effects.

For the semi-elliptical surface crack in a finite thickness plate subjected to
Mode I loading:

2 a4

K, =fifh-- ‘f,.a\/;tz<sin26 + £lgcosz 0)

(o c

where fi, fz, - - - » f, are the individual correction factors for the various geometric
effects.

Using this method, determine an estimate for the stress intensity factor for a
semi-circular crack in a thick plate (see Fig. E3.1a). Also using this method,
estimate the stress intensity factor, K;, for the circular corner crack in the plate
shown in Fig. E3.1b.

Solution For the stress intensity factor for a semi-circular crack in a thick plate,

M)

K, = 1.12<

where f; = 1.12 is the free edge correction factor and 20Vma/m is the stress intensity
for a circular crack embedded in an infinite body subjected to tension (see Fig.
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Figure E3.1 Stress intensity factors for:
(a) a semi-circular crack in a thick plate;
(b) Circular Corner Crack in Thick Plate (b) a circular corner crack in a thick plate.
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3.4e). The stress intensity factor for a circular corner crack in a thick plate

K, ~ (1.12)2(20)@

where f; =

f
20n/ma
n

1.12, the free edge correction factor for one face of the plate
1.12, the free edge correction factor the other face of the plate

Mode I stress intensity factor for a circular crack embedded
in an infinite body subjected to tension

3.2.5 Plastic Zone Size

As mentioned previously, materials develop plastic strains as the yield stress is
exceeded in the region near the crack tip (see Fig. 3.5). The amount of plastic
deformation is restricted by the surrounding material, which remains elastic. The
size of this plastic zone is dependent on the stress conditions of the body.

o4

|

|

\
\
\
\

\

r (distance from crack tip) Figure 3.5  Yielding near crack tip.

Plane stress and plane strain conditions.
through the thickness (o,) cannot vary appreciably
Because there can be no stresses normal to a free surfa
section and a biaxial
(see Fig. 3.6).

In a thin body, the stress
due to the thin section.

ce,,0, = 0 throughout the
state of stress results. This is termed/a> plane stress condition
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Plane Stress Plane Strain Figure 3.6 Plane stress and plane strain
{Thin Body} {Thick Body) conditions.
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In a thick body, the material is constrained in the z direction due to the
thickness of the cross section and €, = 0, resulting in a plane strain condition.
Due to Poisson’s effect, a stress, o,, is developed in the z direction. Maximum
constraint conditions exist in the plane strain condition, and consequently the
plastic zone size is smaller than that developed under plane stress conditions.

Monotonic plastic zone size. The plastic zone sizes under monotonic
loading have been estimated to be

L <K>2 1 t (3.5a)

— = ane stress .

2r \o, P a
YT 1 kY

on (;;) plane strain (3.5b)

where r is defined as shown in Fig. 3.7.

Cyclic plastic zone size. The reversed or cyclic plastic zone size is four
times smaller than the comparable monotonic value. As the nominal tensile load
is reduced, the plastic region near the crack tip is put into compression by the
surrounding elastic body. As shown in Fig. 3.8, the change in stress at the crack
tip due to the reversed loading is twice the value of the yield stress.

Equations (3.5a) and (3.5b) become

1 ( K >2 1 <K>2 | . 36

| - = ane stress .

2m \20, 8 \o, P (3-62)
PEY1 KN 1 K\

— (=) = (= lane strai .

6 <20y> 24m <0y> plane strain (3.60)

The cyclic plastic zone size is smaller than the monotonic and more
characteristic of a plane strain state even in thin plates. Thus LEFM concepts can

ok

Oy
Crack Tip -
i } >

\N__/ r (distance from
crack tip)
> 21y .
Figure 3.7 Monotonic plastic zone size.
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Figure 3.8 Reversed plastic zone size.

often be used in the analysis of fatigue crack growth problems even in materials
that exhibit considerable amounts of ductility. The basic assumption that the
plastic zone size is small in relationship to the crack and the cracked body usually
remains valid.

3.2.6 Fracture Toughness

As the stress intensity factor reaches a critical value, K, unstable fracture occurs.
This critical value of the stress intensity factor is known as the fracture toughness
of the material. The fracture toughness can be considered the limiting value of
stress intensity just as the yield stress might be considered the limiting value of
applied stress.

The fracture toughness varies with specimen thickness until limiting
conditions (maximum constraint) are reached. Recall that maximum constraint
conditions occur in the plane strain state. The plane strain fracture toughness,
Ky, is dependent on specimen geometry and metallurgical factors. ASTM
Designation E-399, Standard Method of Test for Plane Strain Fracture Toughness
of Metallic Materials, sets forth accepted procedures for determining this value. It
is often difficult to perform a valid test for K,.. For example, a valid test using a
thin plate of high toughness material often cannot be performed. Rather the
value, K, at the given conditions is obtained.

The fracture toughness depends on both temperature and the specimen
thickness. The following example shows the importance of the fracture toughness
in designing against unstable fracture. (Also see the problems at the end of the
chapter.)
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Example 3.2

A company is building a 3 ft diameter pressure vessel from material that has a
fracture toughness of 60 ksi Vin. and a yield strength of 85ksi at the operating
temperature. The wall thickness is 0.75 in., and the operating pressure is 2000 psi.

It is required that the vessel “leak-before-burst.” In other words, the crack
must be able to grow through the wall thickness before fast fracture occurs. This
allows the gas or liquid in the pressure vessel to escape and be detected before an
unstable condition develops.

The pressure vessel will be inspected periodically with a technique that can
reliabily detect a crack with a surface length larger than 0.5in. Will the pressure
vessel leak before burst when the surface length of the crack is smaller than this
size? What is the largest value of the surface crack that can develop and still
maintain the leak-before-burst criteria?

Solution The stress intensity for a thumbnail crack in a plate subjected to tension
can be calculated from the equations in Fig. 3.4f and a free surface correction of
1.12. The stress intensity for 8 = x/2 is

L
VO

. where Q is termed the shape factor since it depends on a and c¢. Figure E3.2
materials graphically shows this dependence for various ratios of nominal applied stress, o, to
that the the yield stress, o,.

y usually Using this figure, the leak-before-burst problem can be evaluated. The
following information is known:

K,. = 60 ksi Vin.
o, = 85ksi

y

€ occurs. p = 2000 psi
oughness

value of r=df2 =31t/2 = 18in.
value of t = 0.75in.

1.120Vna

K, =

limiting
onstraint
ughness,

ASTM
oughness
value. It
it using a
ither the

o/oys=0
-~ 0/0ys =060
o/oys =0.80
o/oys = 1.00
| - Figure E3.2 Flaw shape parameter as a

a/2c Ratio

specimen
oughness

O .
1d of the : 1.0 15 20 2.5  function of crack aspect ratio. (From
Flaw Shape Parameter, Q Ref. 34.)
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The hoop stress in the pressure vessel is

r
o=2
t

18 in.
= )0 psi| —— | = . i
2000 p%l(o 75 in.) 48.0 ksi

and the ratio of this stress to the yield stress is

For the leak-before-burst criteria the critical stress intensity factor, K,., must be
larger than the stress intensi

oVra
\%Y

48 Vm(0.75)
0> —"""7 1.
V=g
Q> 1.892

Using Fig. E3.2, for a value of O > 1.892 and o/0, = 0.56, the value of ¢, the
surface crack length, can now be determined:

K, > (1.12)

12)

a

> 0.40
2¢ 0

075
Praaasel C
2(0.40)

¢ < 0.938

2¢ < 1.875in.

A surface crack of 1.875 in. length or smaller will ensure that the vesse] will leak
before break. Thus the Vvessel will not fail catastrophically when a surface crack of

0.51in. can be detected,

3.3 FATIGUE CRACK GROWTH

As discussed earlier, the majority of fatigue life may be taken up in the
propagation of a crack. By the use of fracture mechanics principles it s possible
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Figure 3.9 Extended service life of a
N {cycles) © cracked component.

to predict the number of cycles spent in growing a crack to some specified length
or to final failure.

The aircraft industry has been instrumental in the effort to understand and
predict fatigue crack growth. They have developed the safe-life or fail-safe design
approach. In this method, a component is designed such that if a crack forms, it
will not grow to a critical size between specified inspection intervals. Thus, by
knowing the material growth rate characteristics and with regular inspections, a
cracked component may be kept in service for an extended useful life. This
concept is shown schematically in Fig. 3.9.

3.3.1 Fatigue Crack Growth Curves

Typical constant amplitude crack propagation data are shown in Fig. 3.10. The
crack length, g, is plotted versus the corresponding number of cycles, N, at which
the crack was measured. As shown, most of the life of the component is spent
while the crack length is relatively small. In addition, the crack growth rate
increases with increased applied stress.

The crack growth rate, da/dN, is obtained by taking the derivative of the
above crack length, a, versus cycles, N, curve. (Two generally accepted
numerical approaches for obtaining this derivative are the spline fitting method
and the incremental polynomial method. These methods are explained in detail in
many numerical methods textbooks. For example, see Ref. 35.) Values of
log da/dN can then be plotted versus log AK, for a given crack length, using the
equation

AK = Kpax — Kiin = f(g) AoV 7a 3.7

where Ao is the remote stress applied to the component as shown in Fig. 3.11.
A plot of log da/dN versus log AK, a sigmoidal curve, is shown in Fig. 3.12.

This curve may be divided into three regions. At low stress intensities, Region I,

cracking behavior is associated with threshold, AK,, effects. In the mid-region,
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Figure 3.10 Constant amplitude crack growth data. (From Ref. 34.)
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Region 1II, the curve is essentially linear. Many structures operate in this region.
Finally, in Region II1, at high AK values, crack growth rates are extremely high
and little fatigue life is involved. These three regions are discussed in detail in the
following sections.

3.3.2 Region li

Most of the current applications of LEFM concepts to describe crack growth
behavior are associated with Region II. In this region the slope of the log da/dN
versus log AK curve is approximately linear and lies roughly between 107® and
103 in./cycle. Many curve fits to this region have been suggested. The Paris [36]
equation, which was proposed in the early 1960s, is the most widely accepted. In
this equation

da

N C(AK) (3.8)
where C and m are material constants and AK is the stress intensity range
Kmax - Kmin'

The material constants, C and m, can be found in the literature and in data
books such as Refs. 34 and 37. Values of the exponent, m, are usually between 3
and 4. Reference 38 tabulates values of m for a number of metals. These range
from 2.3 to 6.7 with a sample average of m = 3.5. In addition, tests may be
performed. ASTM E647 sets guidelines for these tests.

The crack growth life, in terms of cycles to failure, may be calculated using
Eq. (3.8). The relation may be generally described by

d

a
E\/:f(K)

Thus, cycles to failure, Ny, may be calculated as
_ (¥ da
a; f(K)

where a; is the initial crack length and g, is the final (critical) crack length. Using
the Paris formulation,

N; (3.9)

d
N = CAK)”
(3.10
o [7_da (3.10)
= » C(AK)m

Because AK is a function of the crack length and a correction factor that is
dependent on crack length [see Eq. (3.7)], the integration above must often be
solved numerically. As a first approximation, the correction factor, f(g), can be
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calculated at the initial crack length and Eq. (3.10) can be evaluated in clos
form.

As an example of a closed form integration, fatigue life calculations for g
small edge-crack in a large plate are performed below. In this case the correction
factor, f(g), does not vary with crack length. The stress intensity factor range is

AK = 1.12A0Vna 3.1

Substituting into the Paris equation yields
l ,
;TC\I/ = C(1.12A0Vra)" (3.12)

Separating variables and integrating (for m # 2) gives

N _ j‘”/“ da
r C(1.12A0Vrma)™

) . 1 (3.13)
== e e ——— e
(m — 2)C(1.12A0Vr)™ <a§”"2)/2 a}"’_z)/2>

Before this equation may be solved, the final crack size, a5, must be
evaluated. This may be done using Eq. (3.2) as follows:

K = f(g)oVma

2 (3.14)
%[Oflig)]

1/ K \2
- E<1 120 ) (3.15)

For more complicated formulations of AK, where the correction factor varies
with the crack length, 4, iterative procedures may be required to solve for a; in
Eq. (3.19).

It is important to note that the fatigue-life estimation is strongly dependent
on 4;, and generally not sensitive to as (when a; <« 4;). Large changes in a result
in small changes of N;, as shown schematically in Fig. 3.13.

An alternative approximate method may be used to predict fatigue crack
growth under constant-amplitude loading. This procedure is outlined in Ref. 39
and discussed in Refs. 6 and 16. Briefly, the procedure is as follows:

af:

1. Divide the interval of crack growth from g, to 4 into a desired number of
increments, n — 1.

2. In Eq. (3.7), determine f(g) for each of the intermediate crack lengths as
well as the initial and final lengths, a; and ay, Tespectively,
3. Calculate a AK,, for each crack length, a,,.
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as,
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Np, Ny, Figure 3.13  Effect of final crack size on
N (cycles) life.

4. For each AK,, determine the corresponding da/dN from crack growth rate
plots or the Paris equation:
da
— ] = C(AK,)" 3.16
(dN)n (AK.) | (3.16)
5. Average the growth rates for two consecutive crack lengths:
(da/dN)n + (da/dN)n+1 - <iq_>
2 dN average
6. Determine the number of cycles for the growth during the crack increment,
an to Ap+1s by

(3.17)

— Aa — 2(an+l - an)
(da/dN)avcragc (da/dN)n + (da/dN)n+1

AN (3.18)

Thus an approximate value is obtained for the number of cycles for an
increment of crack growth. These values of AN for each increment may then be
summed for an approximate solution for the number of loading cycles for the
growth of the crack between the two lengths, a; and a;.

Usually the fatigue life is not sensitive to the fracture toughness of the
material. This is a result of the lack of sensitivity of N; to the final crack size, ar,
as shown in Fig. 3.13. An exception to this would be a case where a very hard
material is subjected to large stresses. For instance, the fatigue life of gears is
dependent on the fracture toughness of the material because the initial crack size
varies little from the final crack length.

3.3.3 Region |

Region I of the sigmoidal crack growth rate curve is associated with threshold
effects. Below the value of the threshold stress intensity factor, AKy,, fatigue
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Steels

VvV Mild Steel
O Low-Alloy Steel
A 1878 Austenitic Steel
0 AS517-F Steel
A 9310 Steel
B8 A508 Class 2 Steel
® AD33 Grade B

Class 1 Steel
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J J | | I J
(_)1'5'5 k 0 0.2 04 06 0.8 . Figure 3.14 Dependence of fatigue-

. e threshold stress-intensity-factor range on
Ratio of Min Stress and Mox Stress, it R stress ratio. (From Ref. 34.)

crack growth does not occur or occurs at a rate too slow to measure. (The
smallest measured rates are larger than approximately 10®in./cycle. This
corresponds to the spacing between atoms in most metals.)

The fatigue threshold for steels is usually between 5 and 15ksi Vin. and
between 3 and 6 ksi Vin. for aluminum alloys. The fatigue threshold is dependent
on the stress ratio, R (R = Ouin/Omax). As seen in Fig. 3.14, the fatigue threshold
decreases with increasing stress ratio.

The threshold also depends on frequency of loading and environment (see
Section 3.3.5). In addition, many of the published threshold values, AK,,, were
developed for long cracks. The validity of these values for short cracks has -
recently been questioned. In Ref. 40 an empirical relationship between the AK,,
for short cracks and the AK, for long cracks has been proposed. Several methods
for measuring AKy, are reviewed in Ref. 28. In fact, due to the sensitivity of AKy,
to environment and load history, it is felt by many that the best method for
determining AK,, is through testing under conditions that simulate actual service
conditions. References 37 and 41 to 43 give more detailed information on fatigue
threshold concepts, testing, and results.

Designing a component such that AK for service conditions would be below
AK,, would be highly desirable. Although this would ensure a low probability of
fatigue failure, this is often impractical due to the low level of operating stress
required. Alternatively, ensuring that defects were so small that the AK was
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below the threshold would be equally desirable. Unfortunately, the defect size
required is not only impractical but unattainable.

For example, given below are typical values for the endurance limit and
fatigue threshold for a common steel. Calculations to determine the maximum
defect size in an infinite plate with a center crack are outlined.

S, = 50 ksi
AKy, = SksiVin.
K = oVna

f(g) =1 (foran infinite center-cracked plate)

From Eq. (3.14), the critical crack size is calculated:

)]

HE
5t \50
= 0.003 in.

This defect size is on the order of that obtained due to normal fabrication or
machining of a component. Thus, even at the endurance limit, which is a
relatively low stress, the defect size is one that would be extremely difficult to
detect using nondestructive inspection methods.

The threshold value may be of use when a part is subjected to low stress
levels and a very large number of cycles. A good example of this would be power

trains that operate at very high speeds.

il

3.3.4 Region il

In Region III, rapid, unstable crack growth occurs. In many practical engineering
situations this region may be ignored because it does not significantly affect the
total crack propagation life.

The point of transition from Region II to Region III behavior is dependent
on the yield strength of the material, stress intensity factor, and stress ratio.
Forman’s equation [44] was developed to model Region III behavior, although it
is more often used to model mean stress effects. This equation,

da C AK™
(3.20)

dN (1 - R)K. - AK

predicts the sharp upturn in the da/dN versus AK curve as fracture toughness is
approached. (This equation is discussed further in Section 3.3.5).

Region III is of most interest when the crack propagation life is on the order
of 10° cycles or less. At high stress intensities, though, the effects of plasticity
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start to influence the crack growth rate because the plastic zone size becomes
large compared to the dimensions of the crack. In this case, the problem should
be analyzed by some elastic—plastic fracture approach such as the J-integral or the
crack-tip opening displacement (COD) methods.

3.3.5 Factors Influencing Fatigue Crack Growth

Stress ratio effects. The applied stress ratio, R, can have a significant
effect on the crack growth rate. Recall, as defined in Section 333, R =
Omin/ Omax = Kenin/ Kooy In general, for a constant AK, the more positive the
stress ratio, R, the higher the crack growth rates, as shown in Fig. 3.15. The
stress ratio sensitivity, though, is strongly dependent on material as shown in
Figs. 3.15 and 3.16. (Note the difference of the scales on the two figures.)

Forman’s equation [Eq. (3.20)] is often used to predict stress ratio effects.
As R increases, the crack growth rate, da/dN, increases. This is consistent with
test observations. Forman’s equation is valid only when R > 0. Generally, it is
believed that when R < 0, no significant change in growth rate occurs compared
to the R = 0 growth rate. Again this is material dependent, as some researchers
have obtained data for certain materials which show higher growth rates for
R < 0 loading [45, 46].

Another method used to compensate for stress ratio effects is Walker’s
equation [47]:

da m i
:{N = C[(l - R) Kmax] (321)

‘ | Figure 3.15 Influence of R on fatigue
10 50 100 crack growth in Ti-6A1-4V, (From Ref.
AK(ksi/iny) 48.)




Chap. 3 Sec. 3.3 Fatigue Crack Growth

: becomes
2m should
gral or the

significant
33, R=
»sitive the
3.15. The
shown in
18.)

io effects.
stent with
rally, it is
compared
esearchers
rates for

140 KSI YS STEEL

SYMBOL | STRESS RATIO | “max/7YS
o 0 039
<3 0.46
o 086
094
065
078
078
034
046
039

+x4rmoen0

. Walker’s

Crack Growth Rate, da/dN (in/cycle)
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Figure 3.16 No major influence of R on

1(56 L Lol L
10 20 50 100 200 fatigue crack growth in 140-ksi yield

Stress-Intensity Factor Range, AK(ksi./in.) strength steel. (From Ref. 49.)

Use of this equation requires that stress ratio data be available to fit the
exponents m and n for a particular material.

Crack closure arguments, as well as arguments based on environmental
effects, have been used to explain the stress ratio effect on crack growth rates.
Both of these topics are discussed in further detail in later sections.

Environmental effects. The fatigue crack growth rate can be greatly
influenced by environmental effects. These effects are extremely complicated due
to the large number of mechanical, metallurgical, and chemical variables and the
interaction between them. Because of this complexity, only an overview is
presented here. A more detailed discussion is found in Ref. 50 with a

»n fatigue ~ comprehensive literature review presented in Ref. 28.
(From Ref. The environmental effect on fatigue crack growth rate is strongly dependent
on the material-environment combination. Several additional factors that in-
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fluence the environmental effect are the following:

Frequency of loading. In an adverse environment, a strong effect of cyclic
loading frequency is observed. No frequency effect is observed on the
fatigue crack growth rate for a material tested in an inert environment. In
general, at low frequencies, crack growth rates increase as more time is
allowed for environmental attack during the fatigue process.

Temperature effects. Reduced fatigue life is usually observed with increasing
temperature. In addition, environmental effects are usually greater at

(ksi./In.)
8 10 20 3040 60 100
(7T T T

Ti-8-1-1 mill anneal
Transverse rolling dir,

S 6
T

(in./cycle)

@
[
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Fatigue in argon
at room temp.

[=5cps
Load profile, sine wave

O R =005

4 R =050

Fatigue in 3.5% NaCl
at room temp.

f=5cps
Load profile, sine wave

® R =005 ' Figure 3.17 Effect of load ratio R on
AR =050 fatigue crack propagation in Ti-8Al-
| | ! ! [ 10 1Mo-1V alloy. Tests conducted in 3.5%
10 20 30 50 80100 NaCl solution and in argon. (From Ref.
AK (MPa/m) 51.)
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elevated temperatures. This is due in part to oxide growth, which both
promotes intergranular cracking and accelerates transgranular cracking.
Waveform of loading cycle. Higher fatigue crack growth rates generally
occur if the increasing (tensile) portion of the loading cycle occurs more
slowly. In other words, when the load rise time is small, the environmental
influence is minimized. For example, a positive sawtooth waveform, ,
results in a higher environmental effect and consequently, increased crack
increasing growth rate than a negative sawtooth waveform, NN\ . No effect of
jreater at waveform profile is usually observed in air.

t of cyclic
:d on the
nment. In
re time is

Stress ratio effects. As discussed previously, some researchers feel that
environmental effects may cause fatigue crack growth rate sensitivity to
stress ratio, R, effects. At high R ratios, enhanced corrosion occurs, as
demonstrated in Fig. 3.17.

Finally, environmental effects have been observed to cause cither an
increase or a decrease in AKy,, depending on material and environment. The
increase in AK, may be explained in some situations by local corrosion or oxides
on the crack surfaces. These oxides increase the volume of material, contributing
to the crack closure effect. The principles of crack closure are discussed below.

3.3.6 Crack Closure

Crack closure arguments are often used to explain the stress ratio effect of crack
growth rates as well as environmental effects on AK,,. In addition, crack closure
theories are very important in variable amplitude fatigue crack growth predic-
tions, which are discussed in Chapter 5.

In the early 1970s, Elber [52] observed that the surfaces of fatigue cracks
close (contact each other) when the remotely applied load is still tensile and do
not open again until a sufficiently high tensile load is obtained on the next loading
cycle. He developed the theory of crack closure to explain this phenomenon.

Elber proposed that crack closure occurs as a result of crack-tip plasticity.
Recall from Section 3.2.5 that a plastic zone develops around the crack tip as the
yield stress of the material is exceeded. As shown in Fig. 3.18, as the crack grows,
a wake of plastically deformed material is developed while the surrounding body

Plastic
Zone at
Crack
Tip

io R on
—8Al~
1in3.5%
rom Ref,

Figure 3.18 Wake of plastically

Wake of Residual Deformation deformed material.
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Wake of Plasticany
Deformed Material

z Crach Face E

A. Crack tully B. Crack Faces  C. Faces in Fun
Open in Contact Contact

Plastic
Zone

A

Time

Figure 3.19 Crack closure phenomenon.

remains elastic. (Figure 3.18 shows the case of a gradually increasing AK and
consequently, gradually increasing plastic zone size.) Elber proposed that as the
component is unloaded, the plastically “stretched” material causes the crack
surfaces to contact each other before zero load is reached (see Fig. 3.19).

Elber turther introduced the idea of a crack-opening stress. This is the value
of applied stress at which the crack is just fully open, O, He suggested that for
fatigue crack growth to occur, the crack must be fully open:

AKeff = Kmax - Kopen

(3.22)
AK = Kmax - Kmin

Kopen > Kmin
Consequently,
AK > AK 4

Therefore, an effective stress intensity factor range, AK_ 4, which is smaller than
AK, should be used in fatigue crack growth predictions.
da
dN

= f(AKeff) (3~23)

Elber proposed that AK.y accounts for the R effect on growth rates. At
higher values of R, less crack closure results and AK. becomes closer to AK
because K., approaches K,,. This results in the crack being subjected to a
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greater range of loading. He obtained the empirical relationship

AKeff = U AK

_ AKew (3.24)

U = 0.5 + 0.4R

Note that Eq. (3.24) is valid only when R > 0. Other researchers have
subsequently developed expressions for U [53] and extended these for ratios of
R <0.

Crack closure arguments are further discussed in connection with variable
amplitude loading and crack growth retardation in Chapter 5.

3.4 IMPORTANT CONCEPTS

« Fracture mechanics approaches provide an estimate of the crack propaga-
tion fatigue life.

« In the fracture mechanics approach, the local stresses and strains are related
to the remote (applied) stresses and strains by the stress intensity factor, K.

» The linear elastic fracture mechanics approach is based on the assumption
that the plastic zone at the crack tip is small compared to the crack length
and the size of the cracked component.

» The fatigue crack growth rate can be related to the stress intensity factor
range. From this, cycles to failure may be calculated.

» The fatigue life estimate is strongly dependent on the initial crack size, a;.
Large changes in the estimate of final crack size, ay, result in only small

changes in the life estimate.

3.5 IMPORTANT EQUATIONS

Stress Intensity Factor

K = f(g)oVna

Stress Intensity Factor Range

AK = Kmax - Kmin = f(g) Ao Vita (37)
Crack Growth Rate (Paris Law)

da
—_ m .
= C(AK) (3.8)
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Cycles to Failure

Ny

Critical (Final) Crack Size

-2l

Effective Stress Intensity Factor Range
Achf = Kmax - Kopen (322)
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PROBLEMS

SECTION 3.2

3.1.

A large plate made of AISI 4340 steel contains an edge crack and is subjected to a
tensile stress of 40 ksi. The material has an ultimate strength of 260 ksi and a K.
value of 45ksi Vin. Assume that the crack is much smaller than the width of the
plate. Determine the critical crack size.

If the plate in Problem 3.1 is now of a finite width such that the ratio of the crack
length to the plate width is 0.1, determine the critical crack size. Determine the
critical crack size for a crack length to plate width ratio of 0.2.

Determine the stress intensity factor for the edge-cracked beam shown below when
subjected to a moment of 400 ft-kips. If the beam was made from an extremely
tough steel that has a yield strength of 195ksi and a K. of 160 ksi Vin. and the
moment applied to the beam was increased to 1600 ft-kips, would this beam fail?

A4in.

M( X Yo

Ao 1 Olin.

The fracture toughness of a material decreases, often dramatically, as the yield
strength of the material increases. For example, for the titanium—aluminum alloy,
Ti-6Al1-4V, with a yield stress of 130 ksi, the fracture toughness is 105 ksi Vin. If the
yield stress is increased to 150 ksi, the fracture toughness decreases to 50 ksi Vin.
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An engineer is faced with the following problem. His company has been
manufacturing a component in the shape of a large sheet or plate using the alloy
above in the 130-ksi yield strength condition. It has been suggested to him that a
weight reduction could be obtained by using the alloy in the 150-ksi yield strength
condition. Nondestructive testing of this component can reliably detect an edge
crack of 0.2 in. Thus design requirements specify that the critical edge crack size be
larger than this value (0.2 in). In addition, a factor of safety of 2 is specified for the
design stress. (The design stress must be less than or equal to one-half the yield
stress.) He has been asked to evaluate the proposed change in material. Should he
approve the proposed change? Verify with calculations and comments. What is the
maximum design stress that could be used with the higher strength material? Would
use of the higher strength material result in a weight reduction?

A large cylindrical bar made of 4140 steel (g, = 90ksi) contains an embedded
circular (penny shaped) crack with a 0.1in. diameter. Assume that the crack radius,
a, is much smaller than the radius of the bar, R, so that the bar may be considered
infinitely large compared to the crack. The bar is subjected to a tensile stress of
50ksi. Determine the plastic zone size at the crack tip. Are the basic LEFM
assumptions violated?

A large plate made of 4140 steel (o, = 90 ksi) containing a 0.2in. center crack is
subjected to a tensile stress of 30 ksi. Determine the plastic zone size. Are LEFM
assumptions violated? If the yield strength of the material is reduced by a factor of 2,
calculate the plastic zone size. Are LEFM assumptions violated? Discuss the
relationship between yield strength and plastic zone size. What effect does the
thickness of the plate have on the plastic zone size?

If the plate in Problem 3.6 was made from the material with the lower yield strength
and subjected to a reversed stress of 30 ksi, calculated the reversed plastic zone size.
Are LEFM assumptions violated? Discuss.

Fracture toughness often decreases significantly with decreasing temperature. As an
example of this, the fracture toughness of A27 cast steel is plotted versus
temperature (°F) below. (Data taken from Ref. 54.)

A component, which can be modeled as a beam subjected to a bending
moment, is made from this material and experiences temperatures ranging from
=150 to +150°F. Quality control procedures can only ensure that the component
will have no cracks larger than 0.4 in. Assume that the crack length is much smaller
than the beam depth. Determine the maximum bending moment that this com-
ponent may withstand for a beam depth of 6 in. and a thickness of 3 in.

A very wide plate made from Al 7075-T651 (K,. = 27 ksi Vin., o, = 80 ksi) contains
an edge crack. Plot the allowable nominal stress (ksi) as a function of crack size, a
(in inches), if the design requirements specify a factor of safety of 2 on the critical
stress intensity factor. If the plate specifications were changed so that Al 7050-
T73651 was used (K, = 35ksi Vin., 0, = 70 ksi), replot the curve. For a nominal
stress of one-half the yield stress, determine the increase in allowable flaw size by
changing from the Al 7075 alloy to the Al 7050 alloy.
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3.10. Design a pressure vessel that is capable of withstanding a static pressure of 1000 psi
and that will “leak-before-burst.” The required material has a fracture toughness of
60 ksi Vin. and a yield strength of 85 ksi. The diameter of the vessel is specified to be
4 ft. A crack with surface length of 1in. can reliably be detected. Since the cost of
the vessel is related directly to the amount of material used, optimize the design so
that the cost is minimized.

SECTION 33

3 11. The crack in an edge-cracked plate extends due to repeated loading. The crack is
initially 0.01 in. and the plate width is 5 in. Calculate the geometry correction factor,
f(g), for crack lengths of 0.01, 0.05, 0.1, and 0.2 in. Discuss the amount of error that
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would be introduced in the fatigue crack growth calculation in assuming that the
geometry correction factor remained constant for the interval @ = 0.01 to 0.2 in.

Discuss the impact of this on the method of crack growth predictions outlined
in Section 3.3.2. Discuss the amount of errof'that would be introduced if the initial
crack length were assumed to be 0.2 in. instead of 0.01 in.

A component made from 7005-T53 aluminum contains a semi-circular surface crack

(a/c = 1) and is subjected to R = 0.1 loading with a stress range, Ao, of 250 MPa.

(Refer to Example 3.1 for an expression for the stress intensity range, AK.) The

following crack growth data were obtained in laboratory air environment. Using

these data:

(a) Plot crack length, a (mm), versus cycles, N.

(b) Plot da/dN versus AK. Identify the three regions of crack growth.

(¢) Determine the Paris law constants, C and m, for the linear region of crack
growth.

N (cycles) da/dN (mm)

95,000
100,000 7.00 x 1077
105,000 3.920 x 107°
110,000 9.665 x 10™¢
115,000 1.053 x 10™%
125,000 « 1.230 x 10~°
130,000 2.063 x 107°
135,000 4.661 x 10™°
140,000 9.565 x 1079
145,000 3.964 x 10~*
147,000 1.105 x 1072
147,400 1.554 x 1073
147,500 8.758 x 10~3
147,500

The following crack growth data were obtained from a center-cracked panel
subjected to a stress range of 50 ksi. Plot the crack size, a, as a function of life, N.
Determine the crack growth rate da/dN. Plot da/dN as a function of AK and
determine the Paris constants. Compare the da/dN values calculated to the
following values given. How sensitive are the Paris constants to the da/dN values?

An aluminum alloy has the following fatigue crack propagation relationship for
R = 0 loading:

da
— = 107%AK)* in.
N 07%AK)* in./cycle

A component that is made from this material is subjected to 0.1 Hz, constant
amplitude, zero to maximum loading in service. The component is inspected every
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Fo- R e

hat the
2in.
yutlined
e initial 10,000 0.009
20,000 0.010 1.56 x 1077
, 30,000 0.012 2.46 x 1077
e crack 40,000 0.015 5.10 x 1077
0 MPa. 50,000 0.018 4,50 x 10”7
{.) The 60,000 0.025 1.05 x 107°
. Using 70,000 0.040 1.74 x 1078
80,000 0.060 2.94 x 107°
90,000 0.100 6.81 x 107
100,000 0.200

Crack Length
Cycles (in.) (in./cycle)

f Kk
crac 1000 hours using a facility capable of detecting a crack of 0.2in. length on the

surface. In rare cases where the failure occurred in service, the crack was found to
be semi-circular with a depth of lin. (¢ = 1in.). Assuming that the aspect ratio
remains equal to 1 (a/c = 1) throughout the life, determine the limit of AS,,,, for
the inspection program to be successful. Assume that the crack depth is much
smaller than the thickness of the part so that the backwall effect may be ignored.
(Hint: See Example 3.1 for the stress intensity factor.)

A new inspection technique promises to reduce the minimum detectable crack
by a factor of 10. Estimate how much the inspection interval can be increased and
still assure safe operation in service without changing the stress. How much could
AS,..x be increased if the new facility were used with the original inspection interval?

A component made from A27 cast steel was inspected and found to have a circular
corner crack with a radius of 0.1in. The fracture toughness for this material at the
operating temperature (75°F) is about 220 ksi Vin. Using the da/dN versus AK curve
shown below [54], determine the number of constant amplitude cycles of 50 ksi
(zero-to-maximum loading) that the component may experience before fast fracture.
Assume that the crack size is negligible compared to the thickness throughout the
life of the component. (Hint: See Example 3.1 for the stress intensity.)

If the operating temperature were decreased to 0°F, so that the fracture
I panel toughness was 120 ksi Vin., determine the number of cycles before failure. (Assume
life, N. that the crack growth rate remains constant with temperature.) How does the final

\K and crack size, a,, affect the number of cycles that this component may experience?
h ‘ ' Yy Y y eXp
to the
alues? ~ /3.16. A very wide plate containing a central crack of length 2a is made of a material with a

yield strength of 70ksi and a fracture toughness of 100 ksi Vin. The plate is

hip for ‘ subjected to a zero-to-maximum constant nominal stress range. Assuming that the
plate fails catastrophically when K. = K, determine the number of cycles to

failure for S,... = 20, 30, 40, 50, and 60 ksi for initial crack lengths of a, = 0.005,

0.01, 0.05, and 0.1 in. The crack growth constants for the Paris law equations are

C =10 m =3

‘onstant :
d every Plot the results as a S—N curve with a, as the parameter.
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C,=1.67x107"

Test Temp. = 75°F
Specimen Type
lin. CTS

Crack Growth Rate, inches/cycle

Lol
20 30 4050 70{90] 150 200
60 80 100

Stress Intensity Range, aK, ksivin. Figure P3.15

3.17. A surface crack of 0.1in. depth and 0.2in. surface length is found in a thick
component. The component is scheduled to be repaired in 6 months. From loading
and material information, it has been determined that catastrophic failure will occur
when the crack size reaches 0.5in. in depth. The component is subjected to
zero-to-maximum loading 10 times per hour, with the maximum stress equal to
50ksi. Assuming that the crack ratio remains constant, will the component fail
before repair? (Assume that the crack growth rate, da/dN, calculated for ¢ = 0.1 in.
remains constant until the crack length reaches a = 0.2. Then assume that the crack
growth remains constant until the crack increases by another 0.1in. Continue to use
this assumption to determine the number of cycles that the component may
withstand before failure.) C = 6 x 107%, m = 3.
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‘3.18."'If the beam in Problem 3.3 was subjected to the loading histories shown below,

- determine the stress intensity factor ranges, AK, for each history and discuss which
history would be more damaging (neglect crack closure effects). Determine the
stress ratio, R, for these two histories. Discuss the effect that crack closure would
have on the damage produced by the two histories.

400

M (f1-kips)

Time

M (ft-kips)

-400

Moment vs Time Loading Histories

Figure P3.15

found in a thick
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n stress equal to
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. Continue to use

component may




