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Abstract The process of prevention of failure from structural

fatigue is a process that should take place during the early

development and design phases of a structure. In the ground

vehicle industry, for example, the durability specifications of a

new product are directly interweaved with the desired perfor-

mance characteristics, materials selection, manufacturing

methods, and safety characteristics of the vehicle. In the field of

fatigue and durability analysis of materials, three main tech-

niques have emerged: nominal stress-based analysis, local

strain-based analysis, and fracture mechanics analysis. Each of

these methods has their own strengths and domain of applica-

bility—for example, if an initial crack or flaw size is known to

exist in a structure, a fracture mechanics approach can give a

meaningful estimate of the number of cycles it takes to prop-

agate the initial flaw to failure. The development of the local

strain-based fatigue analysis approach has been used to great

success in the automotive industry, particularly for the analysis

of measured strain time histories gathered during proving

ground testing or customer usage. However, the strain life

approach is dependent on specific material properties data and

the ability to measure (or calculate) a local strain history. His-

torically, the stress-based fatigue analysis approach was

developed first—and is sometimes considered an ‘‘old’’

approach—but the stress-based fatigue analysis methods have

been continued to be developed. The major strengths of this

approach include the ability to give both quantitative and

qualitative estimates of fatigue life with minimal estimates on

stress levels and material properties, thus making the stress-

based approach very relevant in the early design phase of

structures where uncertainties regarding material selection,

manufacturing processes, and final design specifications may

cause numerous design iterations. This article explains the

FKM-Guideline approach to stress-based uniaxial fatigue

analysis. The Forschungskuratorium Maschinenbau (FKM)

was developed in 1994 in Germany and has since continued to

be updated. The guideline was developed for the use of the

mechanical engineering community involved in the design of

machine components, welded joints, and related areas. It is our

desire to make the failure prevention and design community

aware of these guidelines through a thorough explanation of the

method and the application of the method to detailed examples.
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List of symbols

A Fatigue parameter

ad Constant in the size correction

formula

aR Roughness constant

aP Peterson’s material constant

aN Neuber’s material constant

Information in this article is drawn from ‘‘Chapter 4: Stress-Based

Uniaxial Fatigue Analysis,’’ Metal Fatigue Analysis Handbook:
Practical Problem-Solving Techniques for Computer-Aided
Engineering authored by Yung-Li Lee, Mark Barkey, and Hong-Tae

Kang, published by Butterworth-Heinemann, Oxford, UK, 2012,

pp. 115–160, used by permission from Elsevier, and supplemented by

additional supporting materials for the theory and examples.
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aSS Siebel and Stieler material parameter

aG Material constant in the Kt/Kf ratio

aM Material parameter in determining

the mean stress sensitivity factor

B Width of a plate

b Slope (height-to-base ratio) of an

S–N curve in the HCF regime

bM Material parameter in determining

the mean stress sensitivity factor

bW Width of a rectangular section

bnw Net width of a plate

bG Material constant in the Kt/Kf ratio

CR Reliability correction factor

CD Size correction factor

Cu,T Temperature correction factor for

ultimate strength

Cr Stress correction factor for normal

stress

Cs Stress correction factor for shear

stress

Cb,L Load correction factor for bending

Ct,L Load correction factor for torsion

CE,T Temperature correction factor for

the endurance limit

Cr,E Endurance limit factor for normal

stress

CS Surface treatment factor

Cr,R Roughness correction factor for

normal stress

Cs,R Roughness correction factor for

shear stress

COVS Coefficient of variations

D Diameter of a shaft

DPM Critical damage value in the linear

damage rule

d Net diameter of a notched shaft

deff Effective diameter of a cross

section

deff,min Minimum effective diameter of a

cross section

G Stress gradient along a local x-axis
�G Relative stress gradient
�GrðrÞ Relative normal stress gradient for

plate or shaft based on notch radius
�GrðdÞ Relative normal stress gradient for

plate or shaft based on component

net diameter or width at notch
�GsðrÞ Relative shear stress gradient for

plate or shaft based on notch radius
�GsðdÞ Relative shear stress gradient for

plate or shaft based on component

net diameter or width at notch

HB Brinell hardness

2hT Height of a rectangular section

Kax,f Fatigue notch factor for a shaft

under axial loading

Kax,t Elastic stress concentration factor

for a shaft under axial loading

Kb,f Fatigue notch factor for a shaft

under bending

Kb,t Elastic stress concentration factor

for a shaft under bending

Kf Fatigue notch factor or the fatigue

strength reduction factor

Ki,f Fatigue notch factor for a

superimposed notch

Ks,f Fatigue notch factor for a shaft

under shear

Ks,t Elastic stress concentration factor

for a shaft under shear

Kt Elastic stress concentration factor

Kt,f Fatigue notch factor for a shaft

under torsion

Kt,t Elastic stress concentration factor

for a shaft under torsion

Kx,f Fatigue notch factor for a plate

under normal stress in x-axis

Ky,f Fatigue notch factor for a plate

under normal stress in y-axis

Ksxy;f Fatigue notch factor for a plate

under shear

Kx,t Elastic stress concentration factor

for a plate under normal stress in

x-axis

Ky,t Elastic stress concentration factor

for a plate under normal stress in

y-axis

Ksxy;t Elastic stress concentration factor

for a plate under shear stress

k Slope factor (negative base-to-

height ratio) of an S–N curve in

the HCF regime

Mi Initial yielding moment

Mo Fully plastic yielding moment

Mr Mean stress sensitivity factor in

normal stress

N Number of cycles to a specific crack

initiation length

2N Number of reversals to a specific

crack initiation length

NE Endurance cycle limit

Nf,i Number of cycles to failure at the

specific stress event

nK Kt/Kf ratio or the supporting factor
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nK,r(r) Kt/Kf ratio for a shaft under normal

stress based on the notch radius

nK,r(d) Kt/Kf ratio for a shaft under normal

stress based on component net

diameter or width at notch

nK,r,x(r) Kt/Kf ratio for a plate under normal

stress in x-axis based on notch

radius

nK,r,y(r) Kt/Kf ratio for a plate under normal

stress in y-axis based on notch

radius

nK,s(r) Kt/Kf ratio for a plate or shaft under

shear stress based on notch radius

nK,s(d) Kt/Kf ratio for a shaft under shear

stress based on component net

diameter or width at notch

ni Number of stress cycles

O Surface area of the section of a

component

q Notch sensitivity factor

Rr Reliability value

R Stress ratio = ratio of minimum

stress to maximum stress

RZ Average roughness value of the

surface based on German DIN

system

r Notch root radius

rmax Larger of the superimposed notch

radii

S Nominal stress

SC Nominal stress of a notched

component

Sa Stress amplitude

Sm Mean stress

Smax Maximum stress

Smin Minimum stress

Sr,a Normal stress amplitude in a stress

cycle

Sr,m Mean normal stress in a stress cycle

Sr,max Maximum normal stresses in a

stress cycle

Sr,min Minimum normal stresses in a stress

cycle

Sr,ar Equivalent fully reversed normal

stress amplitude

Sr,E Endurance limit for normal stress at

106 cycles

Ss,E Endurance limit for shear stress at

106 cycles

SE Endurance limit at 106 cycles

SN,E Nominal endurance limit of a

notched component

SS,E,Smooth Nominal endurance limit of a

smooth component at 106 cycles

SS,E,Notched Nominal endurance limit of a

notched component at 106 cycles

SS,r,E Endurance limit of a smooth, polish

component under fully reversed

normal stress

Sr,FL Fatigue limit in normal stress at 108

cycles

SS,s,E Endurance limit of a smooth, polish

component under fully reversed

shear stress

SS,s,u Ultimate strength of a notched,

shell-shaped component for shear

stress

SS;sxy;E Endurance limit of a notched, shell-

shaped component under fully

reversed shear stress

Ss,FL Fatigue limit in shear at 108 cycles

SS,ax,E Endurance limit of a notched, rod-

shaped component under fully

reversed axial loading

SS,ax,u Ultimate strength of a notched, rod-

shaped component in axial loading

SS,b,E Endurance limit of a notched, rod-

shaped component under fully

reversed bending loading

SS,b,u Ultimate strength of a notched, rod-

shaped component in bending

SS,s,E Endurance limit of a notched, rod-

shaped component under fully

reversed shear loading

SS,s,u Ultimate strength of a notched, rod-

shaped component in shear

SS,t,E Endurance limit of a notched, rod-

shaped component under fully

reversed torsion loading

SS,t,u Ultimate strength of a notched, rod-

shaped component in torsion

SS,x,E Endurance limit of a notched, shell-

shaped component under fully

reversed normal stress in x-axis

SS,x,u Ultimate strength of a notched,

shell-shaped component for normal

stress in x-axis

SS,y,E Endurance limit of a notched, shell-

shaped component under fully

reversed normal stress in y-axis

SS,y,u Ultimate strength of a notched,

shell-shaped component for normal

stress in y-axis

St,u Ultimate tensile strength with R97.5
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St,u,min Minimum ultimate tensile strength

St,u,std Mean ultimate tensile strength of a

standard material test specimen

St,y Tensile yield strength with R97.5

St,y,max Maximum tensile yield strength

S0f Fatigue strength coefficient

S0r;f Fatigue strength coefficient in

normal stress

T Temperature in degrees Celsius

tc Coating layer thickness in lm

V Volume of the section of a

component

re Fictitious or pseudo-stress

re(x) Pseudo-stress distribution along x

re
E Pseudo-endurance limit

re
max Maximum pseudo-stress at x = 0

UðzÞ Standard normal density function

u ¼ 1=ð4
ffiffiffiffiffiffi

t=r
p

þ 2Þ Parameter to calculate relative

stress gradient

cW Mean stress fitting parameter in

Walker’s mean stress formula

Introduction

Stress-based uniaxial fatigue analysis is introduced in this

article. The stress may either refer to the nominal stress of a

component or the local pseudo-stress at a stress concen-

tration area. Depending on loading and specimen

configuration, the nominal stress (S) can be calculated

using a traditional stress formula applied to elastic net

cross-sectional properties, while the local fictitious or

pseudo-stress (re) can be computed either by the product of

the nominal stress and the elastic stress concentration

factor (Kt) or by a linear elastic finite element analysis. In

general, the nominal stress approach is preferable for a

shaft or shell-shaped component with a well-defined not-

ched geometry. It should be noted that shell-shaped refers

to a tubular or hollow cross section. Alternatively, the local

pseudo-stress approach is recommended if the stress is

directly determined by an elastic finite element analysis

when there is no well-defined notched geometry or the

elastic stress concentration factor is not known.

Uniaxial fatigue analysis is used to estimate the fatigue

life of a component under cyclic loading when the crack is

initiated due to a uniaxial state of stress. The fatigue life of

a component refers to the fatigue initiation life defined as

the number of cycles (N) or reversals (2N) to a specific

crack initiation length of the component under cyclic stress

controlled tests. Note that one cycle consists of two

reversals. Cyclic stresses are typically described either by

stress amplitude (Sa) and mean stress (Sm) or by maximum

stress (Smax) and minimum stress (Smin), as shown in Fig. 1.

Since Sa is the primary factor affecting N, it is often chosen

as the controlled or independent parameter in fatigue

testing, and consequently, N is the dependent variable on

Sa.

The choice of the dependent and independent variables

places an important role in performing a linear regression

analysis to define the stress and life relation. As the stress

amplitude becomes larger, the fatigue life is expected to be

shorter. The stress and life relation (namely, the constant

amplitude S–N curve) can be generated by fatigue testing

material specimens or real components at various load/

stress levels. For this type of fatigue testing, the mean

stress is usually held as a constant, and is commonly equal

to zero.

The constant amplitude S–N curve is often plotted by a

straight line on log–log coordinates, representing fatigue

data in the high cycle fatigue (HCF) regime where fatigue

damage is due to little plastic deformation. In German, the

constant amplitude S–N curve is often named as the

‘‘Wöhler curve’’ to honor Mr. Wöhler for his contribution

to the first fatigue study in the world. The term S–N curve

is used as the abbreviation of a constant amplitude

S–N curve. Depending on the test objective, the S–N curve

can represent the material or the component. Also,

depending on the definition of stress, the real component

S–N curve can be categorized as the nominal S–N curve or

the pseudo re-N curve.

In general, an S–N curve can be constructed as a

piecewise–continuous curve consisting of two distinct lin-

ear regimes when plotted on log–log coordinates. For the

typical S–N curve of a component made of steel, as sche-

matically illustrated in Fig. 2, there is one inclined linear

segment for the HCF regime and one horizontal asymptote

for the fatigue limit.

The parameters used to define the inclined linear seg-

ment of an S–N curve are termed as the fatigue properties.

The slope of an S–N curve in the HCF regime can be

Fig. 1 Definition of stress terms associated with constant amplitude

loading [16]
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denoted as b (the height-to-base ratio) or as k (the negative

base-to-height ratio). The parameter k is termed as the

slope factor. The two slopes are related in the following

expression:

k ¼ � 1

b
: ðEq 1Þ

Any two S–N data points (S1,N1) and (S2,N2) in the HCF

regime can be related by the slope b or the slope factor k in

the following equation:

N2

N1

¼ S1

S2

� �k

¼ S1

S2

� ��1=b

: ðEq 2Þ

Equation 2 also means any data point (S2,N2) can be

obtained by a reference point (S1,N1) and a given b or k.

The S–N curve is commonly expressed as

NSk
a ¼ A ðEq 3Þ

or

Sa ¼ S0f 2Nð Þb; ðEq 4Þ

where A is the fatigue parameter and S0f is the fatigue strength

coefficient defined as the fatigue strength at one reversal.

The fatigue limit of components made of steels and cast

irons can be defined as the fully reversed stress amplitude

at which the fatigue initiation life becomes infinite or when

fatigue initiation failure does not occur. The fatigue limit

can be interpreted from the physical perspective of the

fatigue damage phenomenon under constant amplitude

loading. Due to cyclic operating stresses, a microcrack will

nucleate within a grain of material and grow to the size of

about the order of a grain width until the grain boundary

barrier impedes its growth. If the grain barrier is not strong

enough, the microcrack will eventually propagate to a

macrocrack and may lead to final failure. However, if the

grain barrier is very strong, the microcrack will be arrested

and become a non-propagating crack. The minimum stress

amplitude to overcome the crack growth barrier for further

crack propagation is referred to as the fatigue limit.

The fatigue limit might be negatively influenced by

other factors such as periodic overloads, elevated temper-

atures, or corrosion. When Miner’s rule [20] is applied in

variable amplitude loading, the stress cycles with ampli-

tudes below the fatigue limit could become damaging if

some of the subsequent stress amplitudes exceed the ori-

ginal fatigue limit. It is believed that the increase in crack

driving force due to periodic overloads will overcome the

original grain barrier strength and help the crack to prop-

agate until failure. Therefore, two methods such as the

Miner rule and the Miner–Haibach model [10], as shown in

Fig. 2, were proposed to include the effect of periodic

overloads on the stress cycle behavior below the original

fatigue limit. The Miner rule extends the S–N curve with

the same slope factor k to approach zero stress amplitude,

while the Miner–Haibach model extends the original S–N

curve below the fatigue limit to the zero stress amplitude

with a flatter slope factor 2k � 1. Stanzl et al. [31] con-

cluded that good agreement is found for measured and

calculated results according to the Miner–Haibach model.

For components made of aluminum alloys and austenitic

steels, the fatigue limit does not exist and fatigue testing

must be terminated at a specified large number of cycles.

This non-failure stress amplitude is often referred to as the

endurance limit, which needs not be the fatigue limit.

However, in this article the endurance limit is defined as

the fully reversed stress amplitude at 106 cycles (the

endurance cycle limit NE) for all materials. Through many

years of experience and testing, empirical relationships that

relate the data among ultimate tensile strengths and

endurance limits at 106 cycles have been developed. These

relationships are not scientifically based but are simple and

useful engineering tools for generating the synthetic com-

ponent stress-life curves for various materials. The detailed

procedures to generate the synthetic nominal S–N and the

pseudo-re–N curves for fatigue designs are the focus of this

report, and will be addressed in the following sections. The

techniques used to conduct S–N testing and perform data

analysis for fatigue properties are beyond the scope of this

discussion, and can be found elsewhere [2, 15]. It is also

worth mentioning that the materials presented here have

been drawn heavily from FKM-Guideline [11].

Ultimate Tensile Strength of a Component

The mean ultimate tensile strength of a standard material

specimen can be determined by averaging the static test

Fig. 2 Schematic constant amplitude S–N curve of a component

made of steels [16]
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results of several smooth (i.e., unnotched), polished round

test specimens of 7.5 mm diameter. If the test data are not

available, the mean ultimate tensile strength of a standard

test specimen can be estimated by a hardness value. There

has been a strong correlation between hardness and mean

ultimate tensile strength of standard material test speci-

mens. Several models have been proposed to estimate

mean ultimate tensile strength from hardness. Lee and

Song [14] reviewed most of them and concluded that

Mitchell’s equation [21] provides the best results for both

steels and aluminum alloys. Mitchell’s equation can be

found below

St;u;std ¼ 3:45 HB, ðEq 5Þ

where St,u,std is the mean ultimate tensile strength (in MPa)

of a standard material test specimen and HB is the Brinell

hardness. Figure 3 shows a plot of mean tensile strength

versus Brinell hardness for steels, irons, and aluminum

alloys and also includes a dashed line representing Eq 5.

It has been found that the surface treatment/roughness

and the local notch geometry have little effect on the

ultimate tensile strength of a notched component. How-

ever, the size of the real component has some degree of

influence on the strength of the component. Therefore,

based on the estimated or measured mean ultimate tensile

strength of a ‘‘standard’’ material specimen, the ultimate

tensile strength of a real component (St,u) with a survival

rate (reliability) of Rr is estimated as follows:

St;u ¼ CDCRSt;u;std; ðEq 6Þ

where CR is the reliability correction factor and CD is the

size correction factor.

If a component exposed to an elevated temperature

condition is subjected to various loading modes, the

ultimate strength values of a notched, rod-shaped compo-

nent in axial (SS,ax,u), bending (SS,b,u), shear (SS,s,u), and

torsion (SS,t,u) can be estimated as follows:

SS;ax;u ¼ CrCu;TSt;u ðEq 7Þ

SS;b;u ¼ Cb;LCrCu;TSt;u ðEq 8Þ

SS;s;u ¼ CsCu;TSt;u ðEq 9Þ

SS;t;u ¼ Ct;LCsCu;TSt;u: ðEq 10Þ

Similarly, the ultimate strength values of a notched,

shell-shaped component for normal stresses in x and y

directions (SS,x,u and SS,y,u) and for shear stress (SS,s,u) can

be determined as follows:

SS;x;u ¼ CrCu;TSt;u ðEq 11Þ

SS;y;u ¼ CrCu;TSt;u ðEq 12Þ

SS;s;u ¼ CsCu;TSt;u; ðEq 13Þ

where Cu,T is the temperature correction factor, Cr and Cs

are the stress correction factors for normal and shear

stresses, respectively, Cb,L and Ct,L are the load correction

factors in bending and torsion, respectively.

Figure 4 shows the schematic effects of these correc-

tions factors on the component ultimate tensile strength and

its endurance limit. These correction factors will be dis-

cussed in the following sections.

Reliability Correction Factor

If test data are not available, a statistical analysis cannot be

performed to account for variability of the ultimate tensile

strength. In the absence of the statistical analysis, the

suggested correction factors for various reliability levels

are given in Table 1. These values were derived under the

assumptions of a normally distributed ultimate tensile

Fig. 3 Mean ultimate tensile strength versus Brinell hardness

(experimental data taken from [33])

Fig. 4 Correction factors for the component ultimate strength and the

endurance limit [16]
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strength and the coefficient of variations (COVS) of 8%.

The coefficient of variations is defined as the standard

deviation of a data set divided by the mean of a data set.

The derivation of these CR values can be obtained using the

following equation:

CR ¼ 1� U�1 1� Rrð Þ
�

�

�

�COVS; ðEq 14Þ

where Rr is the reliability value and U(z) is the standard

normal density function. U(z) and z are defined by the

following equations:

UðzÞ ¼ 1
ffiffiffiffiffiffi

2p
p e�1=2 zð Þ2 ðEq 15Þ

z ¼ U�1 1� Rrð Þ: ðEq 16Þ
Figure 5 shows a plot of Eq 15 (standard normal density

function). The points on the curve represent different levels

of reliability.

Please note that FKM-Guideline [11] specifies that the

ultimate strength of a component for a design should be

based on the probability of a 97.5% survival rate, meaning

a corresponding CR value of 0.843.

Size Correction Factor

The size correction factor (CD) is used to account for the

fact that the strength of a component reduces as the size

increases with respect to that of the standard material test

specimen (a diameter of 7.5 mm). This is due to the

increasing possibility of a weak link with increasing

material volume. Based on FKM-Guideline [11], the size

correction factor, dependent on the cross-sectional size and

the type of material can be obtained as follows:

• For wrought aluminum alloys

CD ¼ 1:0: ðEq 17Þ

• For cast aluminum alloys

CD ¼ 1:0 for deff � 12 mm: ðEq 18Þ

CD ¼ 1:1 deff=7:5 mmð Þ�0:2
for 12 mm\deff\150 mm:

ðEq 19Þ
CD ¼ 0:6 for deff � 150 mm: ðEq 20Þ

• For gray cast irons

CD ¼ 1:207 for deff � 7:5 mm: ðEq 21Þ

CD ¼ 1:207 deff=7:5mmð Þ�0:1922
for deff [ 7:5 mm:

ðEq 22Þ

• For all steels, steel castings, ductile irons, and

malleable cast iron

CD ¼ 1:0 for deff � deff;min: ðEq 23Þ

CD ¼
1� 0:7686 � ad � log deff=7:5mmð Þ

1� 0:7686 � ad � log deff;min=7:5mm
� �

for deff [ deff;min;

ðEq 24Þ

where deff is the effective diameter of a cross section,

deff,min and ad are the constants tabulated in Table 2.

Fig. 5 Standard normal density function

Table 1 Reliability correction factors, CR

Reliability CR

0.5 1.000

0.90 0.897

0.95 0.868

0.975 0.843

0.99 0.814

0.999 0.753

0.9999 0.702

0.99999 0.659

Table 2 Constants used to estimate the size correction factors

(adopted from FKM-Guideline)

Material type

deff,min,

mm ad

Case

of deff

Plain carbon steel 40 0.15 Case 2

Fine grained steel 70 0.2 Case 2

Steel, quenched, and tempered 16 0.3 Case 2

Steel, normalized 16 0.1 Case 2

Steel, case hardened 16 0.5 Case 1

Nitriding steel, quenched, and tempered 40 0.25 Case 1

Forging steel, quenched, and tempered 250 0.2 Case 1

Forging steel, normalized 250 0 Case 1

Steel casting 100 0.15 Case 2

Steel casting, quenched, and tempered 200 0.15 Case 1

Ductile irons 60 0.15 Case 1

Malleable cast iron 15 0.15 Case 1
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Depending on the type of material as listed in Table 2,

two cases are required to be distinguished to determine deff.

In Case 1, deff is defined by

deff ¼
4V

O
; ðEq 25Þ

where V and O are the volume and surface area of the

section of the component of interest, respectively. In Case

2, deff is equal to the diameter or wall thickness of the

component, and applies to all components made of alu-

minum alloys. Examples of deff calculation are illustrated

in Table 3.

Temperature Correction Factor for Ultimate and Yield

Strengths

The temperature factor (Cu,T) is used to take into account

the ultimate and yield strength reductions in the field of

elevated temperatures. FKM-Guideline [11] specifies these

temperature effects for various materials as follows:

• For age-hardening (or heat treatable) aluminum alloys

where T [ 50 �C

Cu;T ¼ 1�4:5� 10�3 T � 50ð Þ� 0:1: ðEq 26Þ

• For non-age-hardening aluminum alloys where

T [ 100 �C

Cu;T ¼ 1� 4:5� 10�3 T � 100ð Þ� 0:1: ðEq 27Þ

• For fine grained steel where T [ 60 �C

Cu;T ¼ 1� 1:2� 10�3T : ðEq 28Þ

• For steel castings where T [ 100 �C

Cu;T ¼ 1� 1:5� 10�3 T � 100ð Þ: ðEq 29Þ

• For all other steels where T [ 100 �C

Cu;T ¼ 1� 1:7� 10�3 T � 100ð Þ: ðEq 30Þ

• For ductile irons where T [ 100 �C

Cu;T ¼ 1� 2:4� 10�3T : ðEq 31Þ

The temperature used in Eq 26–31 must be given in

degrees Celsius. It should be noted that the analysis

provided in FKM-Guideline is applicable in the following

temperature ranges:

• �40 \ T \ 500 �C for steels

• �25 \ T \ 500 �C for cast irons

• �25 \ T \ 200 �C for aluminums.

Stress Correction Factor

The stress correction factor is used to correlate the different

material strengths in compression or shear with respect to

that in tension, and can be found in Table 4. Note that

Cr = 1.0 for tension.

Table 4 Stress correction factors Cr and Cs in compression and in

shear (adopted from FKM-Guideline)

Materials Cr Cs

Case hardening steel 1 1=
ffiffiffi

3
p
¼ 0:577

Stainless steel 1 0.577

Forging steel 1 0.577

Steel casting 1 0.577

Other types of steel 1 0.577

Ductile irons 1.3 0.65

Malleable cast iron 1.5 0.75

Gray cast iron 2.5 0.85

Aluminum alloys 1 0.577

Cast aluminum alloys 1.5 0.75

Note that1=
ffiffiffi

3
p
¼ 0:577 is based on the von Mises yield criterion

Table 3 Calculation of the effective diameter deff (Adopted from

FKM-Guideline)

Cross section

deff

Case 1

deff

Case 2

Solid rod with round cross section

d

d d

Tubular rod with round cross section

s

2s s

Infinitely wide thin wall (tubes with large

inner diameter)

s

2s s

Solid rod with rectangular cross section

b

s

2bs
bþs s

Solid rod with square cross section

b

b

b b
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Load Correction Factor

The stress gradient of a component in bending or torsion

can be taken into account by the load correction factor, also

termed as the ‘‘section factor’’ or the ‘‘plastic notch factor’’

in FKM. It should be noted that this factor is not applicable

for shear loading or unnotched components (only for not-

ched components subjected to torsion or bending

loading).The load correction factor is defined as the ratio of

the nominal stress at global yielding to the nominal stress at

the initial notch yielding. Alternatively, the load correction

factors in Table 5 are derived from the ratio of fully plastic

yielding force, moment, or torque to the initial yielding

force, moment, or torque. For example, a component has

the tensile yield strength (St,y), a rectangular section with a

width of bw, and a height of 2hT. Its initial yielding moment

is calculated as Mi ¼ 2=3bWh2
TSt;y; and the fully plastic

yielding moment is Mo ¼ bWh2
TSt;y: Thus, the correspond-

ing load-modifying factor for bending is found to be

Mo/Mi = 1.5.

The load correction factor also depends on the type of

material according to FKM-Guideline [11]. For surface

hardened components, the load factors are not applicable

ðCb;L ¼ Ct;L ¼ 1:0Þ: For highly ductile austenitic steels in a

solution annealed condition, Cb,L and Ct,L follow the values

in Table 5. Also, for other steels, steel castings, ductile

irons, and aluminum alloys

Cb;L ¼ minimum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

St;y;max=St;y

q

; Cb;L

� 	

ðEq 32Þ

Ct;L ¼ minimum of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

St;y;max=St;y

q

; Ct;L

� 	

; ðEq 33Þ

where St,y is the tensile yield strength in MPa with a reli-

ability of 97.5%, and St,y,max is the maximum tensile yield

strength in MPa, given in Table 6.

Component Endurance Limit Under Fully Reversed

Loading

The endurance limit is defined as the stress amplitude for

fully reversed loading at an endurance cycle limit

(NE = 106 cycles). Since R is defined as the ratio of min-

imum stress to maximum stress, fully reversed loading is

also termed as R = �1 loading. Even though the endur-

ance limit is occasionally expressed in terms of ‘‘range’’ in

some references, it is worth noting that the endurance limit

in this article is clearly defined in ‘‘amplitude’’.

With the probability of survival (Rr), the endurance limit

for a smooth, polished component at an elevated temper-

ature condition and under fully reversed normal (SS,r,E) or

shear stress (SS,s,E) can be estimated from St,u which has

already taken into account the factors for size and

reliability

SS;r;E ¼ Cr;ECE;TSt;u ðEq 34Þ

SS;s;E ¼ CsSS;r;E; ðEq 35Þ

where CE,T is the temperature correction factor for the

endurance limit, Cr,E is the endurance limit factor for

normal stress, and Cs is the shear stress correction factor.

The shear stress correction factor used for estimating the

material fatigue strength in shear is the same factor used for

ultimate strength (see Table 4). Alternatively, if the

material fatigue strength is known (fatigue strength of

standard polished fatigue sample under fully reversed

normal stress), it can be substituted for Eq 34. However,

reliability and size correction factors should be applied to

the material fatigue strength if applicable.

It has been found that the endurance limit of a notched

component is affected by residual stress and surface hardened

layers resulting from surface treatment. The endurance limit is

also affected by the high stress concentration/stress gradient

due to surface roughness and local geometrical changes.

These effects have been empirically quantified by FKM-

Guideline [11]. For example, the endurance limits of a not-

ched, rod-shaped component under fully reversed loading in

axial (SS,ax,E), bending (SS,b,E), shear (SS,s,E), and torsion

(SS,t,E) can be obtained as follows:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1

ðEq 36Þ

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1

ðEq 37Þ

SS;s;E ¼
CSSS;s;E

Ks;f þ 1
Cs;R
� 1

ðEq 38Þ

SS;t;E ¼
CSSS;s;E

Kt;f þ 1
Cs;R
� 1

: ðEq 39Þ

Table 5 Load correction factors Cb,L and Ct,L (adopted from FKM-

Guideline)

Cross section Cb,L Ct,L

Rectangle 1.5 …
Circle 1.7 1.33

Tubular 1.27 1

Table 6 Maximum tensile yield strength St,y,max for various materi-

als (adopted from FKM-Guideline)

Type of

material

Steels, steel

castings

Ductile

irons

Aluminum

alloys

St,y,max, MPa 1050 320 250
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Similarly, the endurance limit values of a notched, shell-

shaped component under fully reversed normal stresses in x

and y directions and under shear stress can be obtained as

follows:

SS;x;E ¼
CSSS;r;E

Kx;f þ 1
Cr;R
� 1

ðEq 40Þ

SS;y;E ¼
CSSS;r;E

Ky;f þ 1
Cr;R
� 1

ðEq 41Þ

SS;sxy;E ¼
CSSS;s;E

Ksxy;f þ 1
Cs;R
� 1

; ðEq 42Þ

where CS is the surface treatment factor, Cr,R and Cs,R are the

roughness correction factors for normal and shear stresses,

respectively, Kax,f, Kb,f, Ks,f, Kt,f, Kx,f, Ky,f, and Ksxy;f are the

fatigue notch factors for various loading modes. Note that the

endurance limit of a smooth component can be calculated

using the above equations with Kf = 1.

Figure 4 shows the schematic effects of these correc-

tions factors on the endurance limits of smooth and notched

components. The correction factors for temperature,

endurance limit for normal stress, surface treatment, sur-

face roughness, and the fatigue notch factor are discussed

in the following sections.

Temperature Correction Factor

It has been observed that at an elevated temperature, the

component fatigue strength reduces with increasing tem-

perature. The temperature reduction factor for the

endurance limit (CE,T) is different from the factor applied

to the ultimate tensile strength (Cu,T). Depending on the

type of materials, FKM-Guideline [11] specifies the tem-

perature correction factors as follows:

• For aluminum alloys where T [ 50 �C

CE;T ¼ 1�1:2� 10�3 T � 50ð Þ2: ðEq 43Þ

• For fine grained steel where T [ 60 �C

CE;T ¼ 1�10�3T: ðEq 44Þ

• For steel castings where T [ 100 �C

CE;T ¼ 1� 1:2� 10�3 T � 100ð Þ: ðEq 45Þ

• For all other steels where T [ 100 �C

CE;T ¼ 1� 1:4� 10�3 T � 100ð Þ: ðEq 46Þ

• For ductile irons where T [ 100 �C

CE;T ¼ 1� 1:6 10�3 � T
� �2

: ðEq 47Þ

• For malleable cast iron where T [ 100 �C

CE;T ¼ 1� 1:3 10�3 � T
� �2

: ðEq 48Þ

• For gray cast iron where T [ 100 �C

CE;T ¼ 1� 1:0 10�3 � T
� �2

: ðEq 49Þ

Note that the temperature must be given in degrees

Celsius.

Endurance Limit Factor

The endurance limit factor (Cr,E) for normal stress is an

empirical factor used to estimate the endurance limit based

on the ultimate tensile strength of a component with a

97.5% reliability, and can be found in Table 7.

Surface Treatment Factor

The surface treatment factor, CS, which takes into account

the effect of a treated surface layer on the fatigue strength

of a component, is defined as the ratio of the endurance

limit of a surface layer to that of the core material. CS

depends on whether the crack origin is expected to be

located at the surface or in the core. According to FKM-

Guideline [11], the upper and lower limits of the surface

treatment factors for steel and cast iron materials are tab-

ulated in Table 8. The decision of which value to use

within the ranges given in Table 8 is left up to the user.

There can be large amounts of variation in the material

properties produced by a given surface treatment. As a

result, one should be very cautious when choosing a value

for the surface correction factor. There are two sets of

values in the table. The values in the parenthesis are for

components with a diameter of 8–15 mm and the other set

of values are for components with a diameter of

30–40 mm. It is also stated in the guidelines that the sur-

face treatment correction factors for cast irons can be

applied to aluminum alloys, providing that the surface

treatment can be performed on the aluminum component.

Table 7 Endurance limit factors for various materials (adopted from

FKM-Guideline)

Material type Cr,E

Case hardening steel 0.40

Stainless steel 0.40

Forging steel 0.40

Steel casting 0.34

Other types of steel 0.45

Ductile iron 0.34

Malleable cast iron 0.30

Gray cast iron 0.30

Wrought aluminum alloys 0.30

Cast aluminum alloys 0.30
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Nitriding is done to increase surface hardness, improve

fatigue life, and improve wear resistance. Nitriding is a

case-hardening heat treatment that introduces nitrogen into

the surface of a ferrous alloy. The hardened surface is

achieved by holding the component at a subcritical tem-

perature of around 565 �C (1050�F) while exposing it to

nitrogenous environment. The component can be exposed

to the nitrogen in a gas form or in the form of a salt bath.

Note that the quenching is not necessary to achieve the

hard case.

Carbo-nitriding is more of a carburizing process than a

nitriding process. Gas carburizing, also referred to as case

carburizing, is a process in which the component is heated

up in a carbon-rich environment allowing the carbon to

diffuse into the material. Carburizing temperatures can

vary depending on the application and desired case depth.

However, carburizing is typically done around 925 �C

(1700�F). When carbo-nitriding, small amounts of nitrogen

are added to the gas carburizing atmosphere allowing the

nitrogen and carbon to diffuse into the component simul-

taneously. Carbo-nitriding of steels is done at temperatures

around 870 �C (1600�F) which is slightly lower than the

normal carburizing temperature. The added nitrogen

increases the hardenability of the component surface. Note

the heating and cooling (air cooling or quenching) time of

the component subjected to carburizing or carbo-nitriding

produces varying degrees of case depth and hardness.

Inductive or induction hardening is a process that uses

electromagnetic induction to heat the component. This pro-

cess can be applied to the surfaces of carbon and alloy steels,

cast and ductile irons and some stainless steels, followed by an

appropriate quenching method. Heating and cooling duration

and temperatures will affect the material properties and depth

of the hardened layer. Flame hardening is a similar process,

except a high temperature flame is used to heat the component

instead. Induction heating allows for greater control of

material properties by heating the material more uniformly

than flame heating. It should be noted that case hardening is

more of a general term for the thermal and chemo-thermal

surface treatments in Table 8, including carburizing which is

not listed in the table [6].

Both cold rolling and shot peening use local plastic

deformation at the surface to induce compressive residual

surface stresses. During shot peening small objects are shot

at the component to plastically deform the surface. On the

other hand, the cold rolling process utilizes a narrow roller

to work the surface. The compressive residual stresses at

the surface improve the fatigue life of a component.

FKM-Guideline does not specify whether or not the surface

treatment correction factors can be used for components with

rectangular cross sections. However, limited experimental

data have shown that shot-peened components with rectan-

gular cross sections have similar increases in endurance limit

compared to components with round cross sections [19].

Figure 6 shows a plot of experimental endurance limit for

surface-treated components versus experimental endurance

limit for components without surface treatment. This figure

also has two lines representing the range of factors given in

Table 8 for shot-peened components. In this figure, one of the

three red data points is for a component with a rectangular

cross section and the other two are for round cross sections. In

addition, experimental data have shown correction factors

used for shot-peened components could be applicable to shot-

cleaned components [18]. Shot cleaning is similar to shot

peening, but is done to clean the surface of a component with

the additional benefit of compressive residual surface stresses

(connecting rods are a good example of components that are

shot-cleaned). In general, shot peening results in greater and

more uniform residual stress distribution at the surface. It can

be seen in Fig. 6 that the points for shot-cleaned components

fall within the ranges suggested by the guidelines for shot-

peened components.

CS can also account for the effect of a surface coating

such as electrolytically formed anodic coatings on the

Table 8 Surface treatment factors for various materials (adopted

from FKM-Guideline)

Surface treatment

Unnotched

components

Notched

components

Steel

Chemo-thermal treatment

Nitriding depth of case

0.1–0.4 mm, surface

hardness 655–926 HB

1.10–1.15

(1.15-1.25)

1.30–2.00

(1.90–3.00)

Case hardening depth of

case 0.2–0.8 mm, surface

hardness 628–701 HB

1.10–1.50

(1.20–2.00)

1.20–2.00

(1.50–2.50)

Carbo-nitriding depth of

case 0.2–0.8 mm, surface

hardness 628–701 HB

(1.80)

Mechanical treatment

Cold rolling 1.10–1.25

(1.20–1.40)

1.30–1.80

(1.50–2.20)

Shot peening 1.10–1.20

(1.10–1.30)

1.10–1.50

(1.40–2.50)

Thermal treatment

Inductive hardening,

flame hardening depth of

case 0.9–1.5 mm, surface

hardness 495–722 HB

1.20–1.50

(1.30–1.60)

1.50–2.50

(1.60–2.8)

Cast iron materials

Nitriding 1.10 (1.15) 1.3 (1.9)

Case hardening 1.1 (1.2) 1.2 (1.5)

Cold rolling 1.1 (1.2) 1.3 (1.5)

Shot peening 1.1 (1.1) 1.1 (1.4)

Inductive hardening,

flame hardening

1.2 (1.3) 1.5 (1.6)
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endurance limit of a component made of aluminum alloys,

and is specified as follows:

CS ¼ 1� 0:271 � log tcð Þ; ðEq 50Þ

where tc is the coating layer thickness in micrometers. The

surface coatings on aluminum alloys reduce the endurance

limit, but the surface treatments performed on steel and

cast iron materials increase the endurance limit. It should

be noted that surface treatments have different effects in

the low cycle fatigue (LCF) region.

Roughness Correction Factor

Surface roughness or irregularity acts as a stress concen-

tration and results in a reduction in fatigue strength in the

HCF region. The roughness correction factors Cr,R and

Cs,R account for the effect of surface roughness on the

component endurance limit for normal and shear stresses,

respectively. According to FKM-Guideline [11], the two

roughness correction factors under normal and shear

stresses are defined as follows:

Cr;R ¼ 1� aRlog RZð Þlog 2St;u=St;u;min

� �

ðEq 51Þ

and

Cs;R ¼ 1� CsaRlog RZð Þlog 2St;u=St;u;min

� �

; ðEq 52Þ

where aR is a roughness constant and St,u,min is the

minimum ultimate tensile strength in MPa listed in

Table 9. Rz is defined as the average summation of the

five highest peaks and the five lowest valleys

RzðDINÞ ¼
1

n

X

n

i¼1

pi þ
X

n

i¼1

vi

 !

: ðEq 53Þ

A roughness value of 200 lm applies for a rolling skin,

a forging skin, and the skin of cast irons. For steels, the

roughness value of a ground surface varies from 1 to

12 lm, and the value of a finished surface ranges from 6.3

to 100 lm.

It is important to use roughness of 200 lm when cal-

culating a roughness factor for parts with rolled, forged,

or cast surfaces even if measured values are available.

Figure 7 shows a plot of predicted endurance limit (at 106

cycles) versus experimental endurance limit (at 106 cycles)

for components having an as-forged surface. There are two

sets of predictions in this figure, one using a roughness of

200 lm and one set using measured roughness values

(measured values were around 50 lm). Figure 7 also has a

45� line representing perfect agreement between predicted

and experimental values. It can be seen that predictions

made using the measured roughness values have less

agreement with experimental data.

Fatigue Notch Factor

It was once believed that at the same crack initiation life

near the endurance cycle limit of 106 cycles, the pseudo-

surface stress (re
E) at the stress concentration location of a

notched component would be identical to the surface

stress of a smooth component (SS,E,Smooth). As this belief

provides re
E ¼ SS;E;Smooth and re

E ¼ Kt � SS;E;Notched, where

Kt and SS,E,Notched are the elastic stress concentration

factor and the nominal stress of a notched component,

respectively, one can conclude that SS,E,Notched is smaller

than SS,E,Smooth by a factor of Kt. However, Tryon and

Dey [34] presented a study revealing the effect of fatigue

strength reduction for Ti–6Al–4V in the HCF regime in

Fig. 8. The test has indicated at the same endurance

cycle, the presence of a notch on a component under

cyclic stressing reduces the nominal stress of a smooth

component by a factor Kf, instead of Kt. The Kf is termed

as the fatigue notch factor or fatigue strength reduction

factor defined as follows:

Fig. 6 Experimental data showing accuracy of surface treatment

correction factors for shot-peened components (experimental data

taken from [18, 19])

Table 9 aR and St,u,min for various materials (adopted from FKM-

Guideline)

Materials aR St,u,min, MPa

Steel 0.22 400

Steel castings 0.20 400

Ductile iron 0.16 400

Malleable cast iron 0.12 350

Gray cast iron 0.06 100

Wrought aluminum alloys 0.22 133

Cast aluminum alloys 0.20 133
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Kf ¼
SS;E;Smooth

SS;E;Notched

�Kt: ðEq 54Þ

Equation 54 can be interpreted as that when

KfSS;E;Notched ¼ SS;E;Smooth; both the notched and the smooth

components would have the same endurance cycle limit, as

shown in Fig. 9.

The smaller Kf than Kt can be explained either by the

local cyclic yielding behavior or by the stress field intensity

theory [1, 27, 38]. The local yielding theory suggests the

cyclic material yielding at a notch root reduces the peak

pseudo-surface stress, while the stress field intensity theory

postulates that the fatigue strength of a notched component

depends on the ‘‘average stress’’ in a local damage zone,

instead of the peak pseudo-surface stress at a notch root.

The stress field intensity theory is valid in the endurance

cycle limit regime where the peak pseudo-surface stress is

approximately equal to the true surface stress. According to

the stress field intensity theory, the ‘‘average stress’’ is

responsible for the crack initiation life, and associated with

the stress distribution and the local damage zone at the

notch. The ‘‘average stress’’ is defined as KfSC as opposed

to the peak pseudo-surface stress, KtSC, where SC is the

nominal stress of a notched component.

Figure 10 schematically shows two notched components

with the same peak pseudo-surface stress and steel mate-

rial. Note that the subscripts 1 and 2 denote the notched

components 1 and 2, respectively. For illustration, the

damage zone of steel material is assumed to be the order of

two grain sizes. As the notch radius decreases, the stress

gradient becomes steeper, resulting in a lower ‘‘average

stress’’ level. Consequently, the notched component with a

smaller notch radius in Fig. 10(b) would have a lower Kf

value and longer fatigue initiation life than the component

with a larger notch radius in Fig. 10(a).

Fig. 7 Predicted fatigue

strength at 106 cycles using

measured and suggested values

for Rz versus experimental

fatigue strength at 106 cycles

(experimental data taken from

[18])

Fig. 8 Effect of a notch on S–N behavior for Ti–6Al–4V in the HCF

regime [16]

Fig. 9 Identical crack initiation life for smooth and notched compo-

nents [16]
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Figure 11 schematically illustrates another example of

two notched components of identical geometry made of

mild strength and high strength steels. Note that the sub-

scripts 1 and 2 denote the notched components 1 and 2,

respectively. Again, the damage zone of steel material is

assumed to be the order of two grain sizes. As the high

strength steel has smaller grain size than the mild strength

steel, it suggests that the damage zone of high strength steel

is smaller than that of the mild strength steel. Under the

same peak pseudo-surface stress and distribution, the

component made of mild strength steel in Fig. 11(a) would

have a lower ‘‘average stress’’ in a larger damage zone, a

lower Kf value, and longer fatigue initiation life than the

component made of high strength steel in Fig. 11(b).

Based on the stress field intensity theory, the fatigue

notch factor is closely related to a notch root radius (or a

stress gradient) and the strength of materials (or the grain

size). Therefore, several empirical methods have been

developed to determine the Kt–Kf relationship based on any

combination of the above two parameters. For example, a

notch sensitivity factor (q) was introduced by Peterson [26]

as follows:

q ¼ Kf � 1

Kt � 1
; ðEq 55Þ

where q is a function of a notch root radius and the ultimate

tensile strength of a material. Also, the Kt/Kf ratio or the

supporting factor (nK) was developed

nK ¼
Kt

Kf

; ðEq 56Þ

where nK depends either on a relative stress gradient and

tensile yield strength [28] or on a notch root radius and

ultimate tensile strength [11].

The three approaches will be discussed in the following

sections, among which the one based on FKM-Guideline is

recommended by the authors.

Notch Sensitivity Factor

Based on Eq 55, the formula for Kf can be written as

follows:

Kf ¼ 1þ Kt � 1ð Þq: ðEq 57Þ

When q = 1 or Kt = Kf, the material is considered to be

fully notch sensitive. On the other hand, when q = 0 and

Kf = 1.0, the material is considered not to be notch sen-

sitive (the so-called notch blunting effect).

Peterson [26] assumed fatigue damage occurs when the

stress at a critical distance (aP) away from the notch root is

equal to the fatigue strength of a smooth component. Based on

the assumption that the stress near a notch reduces linearly,

Peterson obtained the following empirical equation for q:

q ¼ 1

1þ aP

r

; ðEq 58Þ

where r is the notch root radius and aP is Peterson’s

material constant related to the grain size (or St,u) and the

loading mode. A plot by Peterson is provided in Fig. 12 to

determine the notch sensitivity factor for high and mild

strength steels.

Furthermore, Neuber [23] postulated that fatigue failure

occurs if the average stress over a length from the notch

Fig. 10 Effect of notch size and stress gradient on Kf [16]

Fig. 11 Effect of strength of materials on Kf [16]

Fig. 12 Peterson’s notch sensitivity curves for steels [16]
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root equals to the fatigue strength of a smooth component,

and proposed the following empirical equation for q:

q ¼ 1

1þ
ffiffiffiffi

aN

r

p ; ðEq 59Þ

where aN is Neuber’s material constant related to the grain

size or the ultimate tensile strength.

Relative Stress Gradient

Siebel and Stieler [28] introduced a new parameter ð�GÞ
with units of mm�1, termed as the relative stress gradient,

which is defined as follows:

�G ¼ Gð Þx¼0

re
max

¼ 1

re
max

dreðxÞ
dx

� �

x¼0

; ðEq 60Þ

where x is the distance from the notch root, G is the stress

gradient along x, re(x) is the calculated pseudo-stress

distribution along x; re
max is the maximum pseudo-stress at

x = 0, as illustrated in Fig. 13. By testing many smooth

and notched components to the endurance cycle limit of

2 9 107 cycles, they generated a series of empirical curves

relating the Kt/Kf ratios to �G values for various materials in

terms of tensile yield strength (St,y in MPa). These

empirical curves, as illustrated in Fig. 14, can be

expressed by the following generic formula:

nK ¼
Kt

Kf

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aSS � �G
p

; ðEq 61Þ

where aSS is the Siebel and Stieler material parameter.

FKM-Guideline

The fatigue notch factors for a notched shaft under axial,

bending, shear, and torsional stress (Kax,f, Kb,f, Ks,f, Kt,f)

can be calculated from the corresponding elastic stress

concentration factors (Kax,t, Kb,t, Ks,t, Kt,t) and the Kt/Kf

ratios or the supporting factors (nK,r(r), nK,r(d), nK,s(r),

nK,s(d)) as follows:

Kax;f ¼
Kax;t

nK;rðrÞ
ðEq 62Þ

Kb;f ¼
Kb;t

nK;rðrÞ � nK;rðdÞ
ðEq 63Þ

Ks;f ¼
Ks;t

nK;sðrÞ
ðEq 64Þ

Kt;f ¼
Kt;t

nK;sðrÞ � nK;sðdÞ
; ðEq 65Þ

where r is the notch radius and d is the net diameter or net

width of a notched section. Similarly, the fatigue notch

factors for a notched shell-shaped component under normal

stresses in x and y directions and shear stress (Kx,f, Ky,f,

Ksxy;f ) can be calculated from the corresponding elastic

stress concentration factors ðKx;t Ky;t; Ksxy;tÞ and the Kt/Kf

ratios ðnK;r;xðrÞ; nK;r;yðrÞ; nK;sðrÞÞ as follows:

Kx;f ¼
Kx;t

nK;r;xðrÞ
ðEq 66Þ

Ky;f ¼
Ky;t

nK;r;yðrÞ
ðEq 67Þ

Ksxy;f ¼
Ksxy;t

nK;sðrÞ
: ðEq 68Þ

Fig. 13 Pseudo-stress distribution and the stress gradient at a notch

root [16]

Fig. 14 Relative stress gradient effect on Kt–Kf ratios for various

materials in terms of tensile yield strength [16]
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The Kt/Kf ratios (nK,r(r) and nK,r(d)) for normal stress

are calculated from the relative normal stress gradients
�GrðrÞ and �GrðdÞ

nK;r ¼ 1þ �Gr � 10� aG�0:5þSt;u=bGð Þ for �Gr� 0:1 mm�1

ðEq 69Þ

nK;r ¼ 1þ
ffiffiffiffiffiffi

�Gr

p

� 10� aGþSt;u=bGð Þ
for 0:1 mm�1\ �Gr� 1 mm�1

ðEq 70Þ

nK;r ¼ 1þ
ffiffiffiffiffiffi

�Gr
4
p

� 10� aGþSt;u=bGð Þ
for 1 mm�1\ �Gr� 100 mm�1:

ðEq 71Þ

Likewise, the Kt/Kf ratios for shear stress are calculated

from the relative shear stress gradients �GsðrÞand �GsðdÞ

nK;s ¼ 1þ �Gs � 10� aG�0:5þCsSt;u=bGð Þ for �Gs� 0:1 mm�1

ðEq 72Þ

nK;s ¼ 1þ
ffiffiffiffiffiffi

�Gs

p

� 10� aGþCsSt;u=bGð Þ
for 0:1 mm�1\ �Gs� 1 mm�1

ðEq 73Þ

nK;s ¼ 1þ
ffiffiffiffiffiffi

�Gs
4
p

� 10� aGþCsSt;u=bGð Þ
for 1 mm�1\ �Gs� 100 mm�1;

ðEq 74Þ

where St,u is the ultimate tensile strength with a 97.5%

reliability in units of MPa, Cs is the shear stress correction

factor, aG and bG are the material constants listed in

Table 10.

The relative stress gradient of a notched component

under a specific loading mode really depends on the

diameter or net width of the component and its notch

radius. The relative stress gradients for bending and torsion

as a function of the net diameter (d) of a notched shaft or

net width (bnw) of a notched plate can be obtained

�GK;rðdÞ ¼ �GK;sðdÞ ¼
2

d
ðEq 75Þ

�GK;rðbnwÞ ¼ �GK;sðbnwÞ ¼
2

bnw

: ðEq 76Þ

Also, the relative stress gradients ( �GK;rðrÞ and �GK;sðrÞ)
can be found in Table 11 for various notched geometries.

Table 10 aG and bG for various materials (adopted from FKM-

Guideline)

Materials aG bG, MPa

Stainless steel 0.40 2400

Steels except for stainless steel 0.50 2700

Steel castings 0.25 2000

Ductile irons 0.05 3200

Malleable cast iron �0.05 3200

Gray cast iron �0.05 3200

Wrought aluminum alloys 0.05 850

Cast aluminum alloys �0.05 3200

Table 11 Relative stress gradients �GK;rðrÞ and �GK;sðrÞ for various

notched geometries (adopted from FKM-Guideline)

Notched components �GK;rðrÞ, mm�1 �GK;sðrÞ, mm�1

A groove shaft in Fig. 15(a) 2
r 1þ uð Þ 1

r

A shoulder shaft in Fig. 15(b) 2:3
r 1þ uð Þ 1:15

r

A groove plate in Fig. 15(c) 2
r 1þ uð Þ …

A shoulder plate in Fig. 15(d) 2:3
r 1þ uð Þ …

A central hole plate in Fig. 15(e) 2:3
r …

Note that (1) u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

for t=d� 0:25 or t=bnw� 0:25;;
(2) u ¼ 0 for t=d [ 0:25 or t=bnw [ 0:25

Fig. 15 Definition of notched

components in FKM-Guideline

[16]
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To calculate the fatigue notch factor the following steps

should be followed. First, calculate the elastic stress con-

centration factor. Second, determine the relative stress

gradient. If the component has a complicated geometry,

FEA software is needed to determine the relative stress

gradient. For well-known geometries, the equations listed

in Table 11 are used to calculate the relative stress gradient

based on the notch radius. If the component (having a well-

known geometry listed in Table 11) is subjected to bending

or torsion loading, the relative stress gradient based on net

diameter or width also needs to be calculated using Eq 75

or 76. Third, calculate the supporting factor using the

appropriate equation based on the relative stress gradient.

Note, if a stress gradient based on the net diameter or width

was calculated, then a supporting factor will also need to be

calculated based on the net diameter or width. Finally, the

relationship between the supporting factor and the elastic

stress concentration factor is used to determine the fatigue

notch factor (see section 7 for examples).

FKM-Guideline also specifies that the resulting fatigue

notch factors for superimposed notches (e.g., K1,f and K2,f)

can be estimated as

Kf ¼ 1þ K1;f � 1
� �

þ K2;f � 1
� �

: ðEq 77Þ

Superposition does not need to be considered if the

distance between notches is equal to 2rmax or above, where

rmax is the larger one of both notch radii.

Constant Amplitude Stress-Life Curve for a Notched

Component Under Fully Reversed Loading

Based on the definition of stress (namely nominal stress or

pseudo-stress), the procedure to generate a constant

amplitude stress-life curve for a notched component under

fully reversed loading is discussed.

Constant Amplitude Nominal Stress-Life Curve

This section presents the FKM method to construct the

synthetic S–N curve for a notched component, based on a

reference point and a specified slope factor (k). The

endurance limit (SE) at an endurance cycle limit NE = 106

cycles) is the reference point. Thus, the S–N equation can

be obtained as follows:

NSk ¼ NESk
E ¼ Constant: ðEq 78Þ

The specified slope factor (k) depends on the type of

material and stress. Below are the specifications from

FKM-Guideline:

• For surface non-hardened components made of steels and

cast irons, except austenitic steel, the component constant

amplitude S–N curves based on normal stress and shear

stress are illustrated in Fig. 16(a) and (b), respectively.

The endurance limit value (Sr,E or Ss,E) at 106 cycles is the

fatigue limit at which the fatigue initiation life becomes

infinite or when fatigue initiation failure does not occur.

The specific slope factors for normal stress and shear stress

(k1,r and k1,s) are defined as 5 and 8, respectively.

• For surface hardened components made of steels and

cast irons, the component constant amplitude S–

N curves for both normal and shear stresses have larger

slope factors than the non-hardened components by a

factor close to 3.0. As shown in Fig. 17, the specific

slope factors for normal stress and shear stress (k1,r and

k1,s) are defined as 15 and 25, respectively.

• For components made of aluminum alloys and austen-

itic steel, the component constant amplitude S–N curves

based on normal stress and shear stress are illustrated in

Fig. 18(a) and (b), respectively. The stress amplitude at

108 cycles is defined as the fatigue limit (Sr,FL or Ss,FL).

The S–N curve between 106 and 108 cycles are defined

by the same reference point, but with a different slope

factor such as 15 for normal stress or 25 for shear stress.

The fatigue limit can be calculated using Eq 78.

Constant Amplitude Pseudo-stress-Life Curve

The synthetic constant amplitude pseudo-stress-life curve

for a notched component is preferable if the local stress is

determined by a linear elastic finite element analysis. This

section presents the method to convert the above nominal

stress-life curve to the local pseudo-stress-life curve.

The following equations are valid:

re
E ¼ KtSS;E;Notched ðEq 79Þ

Kf ¼
SS;E;Smooth

SS;E;Notched

ðEq 80Þ

nK ¼
Kt

Kf

; ðEq 81Þ

where re
E is the pseudo-endurance limit, nK is the Kt/Kf

ratio or the supporting factor defined in section 3, SS,E,-

Notched is the endurance limit of a notched component,

calculated by the equations in section 3, SS,E,Smooth is the

endurance limit of a smooth component, calculated by the

equations in section 3 with Kf = 1.

The above equations lead to a new reference stress point

at 106 cycles as

re
E ¼ nKSS;E;Smooth: ðEq 82Þ

With the assumption of the identical slope factor

specified by FKM-Guideline, the synthetic constant

amplitude pseudo-stress-life curve can then be
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determined. Figure 19 shows the concept of defining the

pseudo-endurance limit with respect to the endurance limit

of a smooth component as well as the comparison between

the constant amplitude S–N and re
E�N curves for a

notched component made of steels.

Stress-Life Curve for a Component Under Variable

Amplitude Loading

For a component subjected to variable amplitude loading

over time, a rainflow cycle counting technique is typically

Fig. 18 Synthetic component

constant amplitude S–N curve

for components made of

aluminum alloys and austenitic

steel [16]

Fig. 17 Synthetic component

constant amplitude S–N curve

for surface hardened

components made of steels and

cast irons [16]

Fig. 16 Synthetic component

constant amplitude S–N curve

for surface non-hardened

components made of steels and

cast irons [16]
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used to convert a complicated time-varying stress history to

a series of discrete simple constant amplitude stress events

which consist of a mean stress level and a number of stress

cycles (ni). The fatigue life (Nf,i) corresponding to the

number of cycles to failure at the specific stress event can

be estimated from the component constant amplitude S–N

curve. In this case, the fatigue damage is defined as the

cycle ratio ð¼ni=Nf;iÞ: The Palmgren–Miner [20, 25] linear

damage rule is adopted to calculate the accumulated

damage, which assumes fatigue damage occurs when the

sum of the cycle ratios at each constant amplitude stress

event reaches a critical damage value (DPM). Fatigue fail-

ure can be represented mathematically as
X ni

Nf;i
�DPM: ðEq 83Þ

Palmgren and Miner found the critical damage value of

1.0 in their studies. But since their work was conducted, it

has been shown [13, 15, 37] that the critical damage value

is a random variable varying from 0.15 to 1.06. For

mechanical designs, FKM-Guideline [11] recommends

DPM = 0.3 for steel, steel castings, and aluminum alloys,

while DPM = 1.0 for ductile irons, gray cast irons, and

malleable cast irons. For electronic equipment design,

Steinberg [32] suggests DPM = 0.7.

The component constant amplitude S–N curve is sup-

posed to be used for estimating the fatigue life of a

component at a given constant amplitude stress event. But

when the Palmgren–Miner linear damage rule is applied to

a component in variable amplitude loading, the stress

cycles with amplitudes below the fatigue limit could

become damaging if some of the subsequent stress ampli-

tudes exceed the original fatigue limit. It is believed that

the increase in crack driving force due to the periodic

overloads will overcome the original grain barrier strength

and help the crack to propagate until failure. Therefore,

there is a need to modify the fatigue limit for a component

subjected to variable amplitude-loading history because the

fatigue limit obtained from constant amplitude loading

might be negatively influenced by periodic overloads. Two

methods such as the Miner rule and the Miner–Haibach

model [10], as shown in Fig. 20, were proposed to include

the effect of periodic overloads on the stress cycle behavior

below the original fatigue limit. The Miner rule extends the

S–N curve with the same slope factor k to approach zero

stress amplitude, while the Miner–Haibach model extends

the original S–N curve below the fatigue limit to the zero

stress amplitude with a flatter slope factor 2k � 1. Stanzl

et al. [31] concluded that a good agreement is found for

measured and calculated results according to the Miner–

Haibach model.

Mean Stress Effect

From the perspective of applied cyclic stresses, the fatigue

damage of a component strongly correlates with the

applied stress amplitude or applied stress range, and is

secondarily influenced by the mean stress. The mean stress

effect should be seriously considered in fatigue analyses. In

the HCF regime, normal mean stresses have a significant

effect on fatigue behavior of components. As the opening

of microcracks accelerates the rate of crack propagation

and the closing of microcracks retards the growth of cracks,

tensile mean normal stresses are detrimental and com-

pressive mean normal stresses are beneficial in terms of

fatigue strength. There is very little or no effect of mean

stress on fatigue strength in the LCF regime where the

Fig. 19 Synthetic constant amplitude S–N and re–N curves for a

notched component made of steel [16]

Fig. 20 Constant amplitude S–N curve for a component made of

steels and subjected to variable amplitude loading [16]
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large amount of plastic deformation significantly reduces

any beneficial or detrimental effect of the mean stress.

The mean normal stress effect can be represented by the

mean stress (Sr,m) or the stress ratio (R). Both are defined

as follows:

Sr;m ¼
Sr;max þ Sr;min

� �

2
ðEq 84Þ

R ¼ Sr;min

Sr;max

; ðEq 85Þ

where Sr,max and Sr,min are the maximum and minimum

normal stresses in a stress cycle, respectively. For example,

it can be found that Sr,m = 0 and R = �1 under fully

reversed stress conditions.

The early models to account for the mean stress effect,

such as Gerber [8], Goodman [9], Haigh [12], Soderberg

[30], and Morrow [22], were usually plotted against

empirical data in constant life plots of stress amplitude

(Sr,a) versus mean stress (Sr,m). In German, these constant

life plots are termed as Haigh’s diagram, while commonly

referred to as Goodman’s diagram in North America. As

schematically illustrated in Fig. 21, Haigh’s diagram can

be determined from a family of constant amplitude Sr,a–N

curves (Wohler curves) with various mean stress values

ð0; Sr;m1; Sr;m2; and Sr;m3Þ: The equivalent fully reversed

stress amplitude (Sr,ar) is the generic interception point of

the Sr,a axis, which is used to determine the fatigue life (Ni)

from a corresponding component S–N curve. According to

Goodman’s and Morrow’s models as illustrated in

Fig. 21(c), the ultimate tensile strength (St,u) and the fati-

gue strength coefficient ðS0r;fÞ are the physical limits to Sr,m

and the interception of the Sr,m axis, respectively. Alter-

natively, Haibach in FKM-Guideline introduces the mean

stress sensitivity factor (Mr) to define the Haigh diagram,

which is the absolute value of the slope of the constant life

plot. The mean stress sensitivity factor depends on the type

of material and loading condition.

Even though there are numerous models developed to

account for the mean stress effect on fatigue strength and

lives, four commonly used formulas are chosen for dis-

cussion: Goodman’s, Morrow’s [22], Smith–Watson–

Topper’s (SWT in brevity) [29], and Walker’s [35]. The

differences among the four models can be observed from

the following expressions of the equivalent fully reserved

stress amplitude in the case of moderate mean stress values

1. Goodman’s

Sr;ar ¼
Sr;a

1� Sr;m

St;u

: ðEq 86Þ

2. Morrow’s

Sr;ar ¼
Sr;a

1� Sr;m

S0r;f
:

ðEq 87Þ

3. SWT’s

Sr;ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sr;maxSr;a

p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sr;a þ Sr;m
� �

Sr;a

q

: ðEq 88Þ

4. Walker’s

Sr;ar ¼ S1�cW
r;maxScW

r;a ¼ Sr;a þ Sr;m
� �1�cW ScW

r;a; ðEq 89Þ

where cW is a mean stress fitting parameter. The SWT and

the Walker equations predict that fatigue crack will not

initiate if the maximum normal stress in a cycle is less than

or equal to zero, meaning Sr,max B 0.

The following conclusions are extracted from the

extensive studies by Dowling et al. [7] on experimental

fatigue data for steels, aluminum alloys, and a titanium

Fig. 21 Construction of constant life plots on normal stress in Sr,a and Sr,m coordinates [16]
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alloy where the R ratio ranges from �2 to 0.45. Goodman’s

model for life predictions is highly inaccurate and should

not be used. Walker’s model gives superior results if an

additional mean stress fitting parameter (cW) is provided.

Otherwise, both Morrow’s and SWT’s models yield rea-

sonable life estimates for steels. For aluminum alloys, the

SWT model is recommended. Dowling et al. concluded

that the SWT method provides good results in most cases

and is a good choice for general use.

If there are no experimental data available for materials

or the R ratio is beyond the range of the previous studies,

FKM-Guideline [11] is recommended for use. According

to FKM-Guideline, Haigh’s diagram based on a normal

stress can be classified as four regimes as shown in Fig. 22

and summarized below:

• Regime I is for the stress ratio R [ 1 where the

maximum and minimum stresses are under

compression.

• Regime II is applicable to the case of �? B R B 0

where R = �? is when the max stress is equal to 0;

R = �1, the fully reversed stress; R = 0, the alternat-

ing tension stress with a zero minimum stress.

• Regime III is for 0 \ R \ 0.5 where the maximum and

minimum stresses are under tension.

• Regime IV is for R C 0.5, the regime of high alternat-

ing tension stress.

FKM-Guideline specifies various mean stress sensitivity

factors due to normal stress for all four regimes and any

material. The fully reversed fatigue strength Sr,ar in the

classified regimes can be written as follows:

• Regimes I and IV

Sr;ar ¼ Sr;a: ðEq 90Þ

• Regime II

Sr;ar ¼ Sr;a þMrSr;m: ðEq 91Þ

• Regime III

Sr;ar ¼ 1þMrð Þ Sr;a þ Mr=3ð ÞSr;m

1þMr=3
: ðEq 92Þ

Note Eq 90 implies that the alternating stress has a

greater influence on fatigue behavior than mean stress in

regions 1 and 4 where mean stresses are very high.

Haigh’s diagram based on shear stress can be classified as

three regimes as shown in Fig. 23 because the negative mean

stress in shear is always regarded to be positive and treated the

same as the positive mean stress. For the case of ambient or

elevated temperatures, the mean stress sensitivity factors for

normal and shear stresses can be obtained as follows:

Mr ¼ aMSt;u þ bM ðEq 93Þ

Ms ¼ CsMr; ðEq 94Þ

where aM and bM are the material parameters listed in

Table 12, St,u and Cs are the ultimate tensile strength in

MPa and the shear stress correction factor, respectively.

For mechanical designs, Wilson and Haigh [36] introduced

the line of constant tensile yield strength as an additional

design constraint for materials, termed as the safe design

region for the consideration of both the fatigue strength and

the tensile yield strength. The line of constant tensile yield

strength was constructed by the line connecting the two tensile

yield strength values in Sr,a and Sr,m axes. Any combination of

Table 12 aM and bM for various materials (adopted from FKM-

Guideline)

Materials aM bM

Steel 0.00035 �0.1

Steel casting 0.00035 0.05

Ductile irons 0.00035 0.08

Malleable cast iron 0.00035 0.13

Gray cast iron 0 0.5

Wrought aluminum alloys 0.001 �0.04

Cast aluminum alloys 0.001 0.2
Fig. 22 Haigh’s diagram for mean stress effect on normal stress [16]

Fig. 23 Haigh’s diagram for mean stress effect on shear stress [16]
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Sr,a and Sr,m falling inside of the enclosed area is considered a

safe design which will meet both the yield strength and the

fatigue strength criteria. Figure 24 shows the isothermal

temperature effect on the safe design regions for the fatigue

strength and tensile yield strength at both ambient and ele-

vated temperatures. The temperature correction factors for

tensile yield strength and fatigue strength follow the guide-

lines in sections 2 and 3, respectively.

Examples and Case Studies

This section contains example problems as well as a few

case studies. Two sets of solutions are provided with each

example, one set using the methods described in the FKM-

Guideline, and the other using common North American

analysis techniques.

Example 1 [15]

A grooved shaft made of high-grade alloy steel is heat-

treated to 405 HB and finished with a careful grinding

operation. The geometry of the shaft is shown in Fig. 25,

with the dimensions of D = 28.0 mm, d = 25.5 mm, and

the notch radius of r = 1.28 mm. The elastic stress con-

centration factors due to bending, axial, and torsional

loading are calculated as Kt,bending = 2.26, Kt,axial = 2.50,

and Kt,torsion = 1.64. Estimate the endurance limit (at 106

cycles) of the notched shaft with a reliability of 97.5% for

the following loading conditions:

• Fully reversed bending loading.

• Fully reversed axial loading.

• Fully reversed torsional loading.

Solution (North American)

Using the North American analysis techniques, the endur-

ance limit can be estimated by the following equation:

Se ¼
Sb;EKLKsKdCR

Kf

;

where Sb,E is the material fatigue strength, KL is the loading

factor, Ks is the surface effect factor (effect of roughness and

surface treatment), Kd is the size effect factor, and CR is the

reliability factor. The parameter Sb,E is defined as follows:

Sb;E ¼ 0:5St;u;std for St;u;std\1400 MPa

Sb;E ¼ 700 MPa for St;u;std� 1400 MPa,

where St,u,std is in units of MPa. Therefore, for component with

a Brinell hardness of 405, Sb,E = 700 MPa. For a reliability of

97.5%, the reliability correction factor is as follows:

CR ¼ 1� U�1 1� Rrð Þ
�

�

�

�COVS ¼ 0:843:

The correction factor for surface effects resulting from a

careful grinding procedure is as follows:

KS ¼ 1:58 Suð Þ�0:085¼ 0:85:

It should be noted that the surface effect factor (KS) is based

on data generated over 70 years ago [24]. The values for Sb,E,

CR, and Ks will apply for all three loading conditions.

For axial loading, the factors for loading (KL) and size

effect (Kd) are constant and defined as follows:

KL ¼ 0:85

Kd ¼ 1:

Peterson’s formula for fatigue strength reduction at the

endurance limit is used to calculate the fatigue notch factor

as follows:

a ¼ 0:0254
2079

St;u;std

� �1:8

¼ 0:0254
2079

1400

� �1:8

¼ 0:0518 mm

q ¼ 1

1þ a
r

¼ 1

1þ 0:0518
1:28

¼ 0:961

Kf ¼ 1þ Kt;axial � 1
� �

q ¼ 1þ 2:50� 1ð Þ0:961 ¼ 2:45:

Fig. 24 Safe design regions for fatigue strength at both ambient and

elevated temperatures [16]

Fig. 25 Geometry of grooved shaft in Example 1
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Therefore, the endurance limit at 106 cycles for this

component under axial loading is as follows:

Se;axial ¼
Sb;EKLKsKdCR

Kf

¼ 700 0:85ð Þ 0:85ð Þ 1ð Þ 0:843ð Þ
2:45

¼ 174 MPa:

For bending loading, the factor for loading is constant

and is defined as follows:

KL ¼ 1:0:

The size effect factor is given by the following equation:

Kd ¼ 1:189 dð Þ�0:097¼ 1:189 25:5ð Þ�0:097¼ 0:868:

Similar to axial loading Peterson’s formula for fatigue

strength reduction at the endurance limit is used to

calculate the fatigue notch factor for bending. Note that

the fatigue notch factor is influenced by loading condition

as well as other variables. The fatigue notch factor for

bending is defined below

a ¼ 0:0254
2079

St;u;std

� �1:8

¼ 0:0254
2079

1400

� �1:8

¼ 0:0518

q ¼ 1

1þ a
r

¼ 1

1þ 0:0518
1:28

¼ 0:961

Kf ¼ 1þ Kt;bending � 1
� �

q ¼ 1þ 2:26� 1ð Þ0:961 ¼ 2:21:

Therefore, the endurance limit at 106 cycles for this

component under bending loading is as follows:

Se;bending ¼
Sb;EKLKsKdCR

Kf

¼ 700 1ð Þ 0:85ð Þ 0:868ð Þ 0:843ð Þ
2:21

¼ 197 MPa:

For torsional loading, the factor for loading is constant

and is defined as follows:

KL ¼ 0:58:

The size effect factor is given by the following equation:

Kd ¼ 1:189 dð Þ�0:097:

Peterson’s formula for fatigue strength reduction for

torsional loading is given below:

a ¼ 0:01524
2079

St;u;std

� �1:8

¼ 0:01524
2079

1400

� �1:8

¼ 0:0311

q ¼ 1

1þ a
r

¼ 1

1þ 0:0311
1:28

¼ 0:976

Kf ¼ 1þ Kt;torsion � 1
� �

q ¼ 1þ 1:64� 1ð Þ0:976 ¼ 1:62:

Therefore, the endurance limit at 106 cycles for this

component under torsional loading is as follows:

Se;torsion ¼
Sb;EKLKsKdCR

Kf

¼ 700 0:58ð Þ 0:85ð Þ 0:868ð Þ 0:843ð Þ
1:62

¼ 156 MPa:

Solution (FKM-Guideline)

Using the analysis techniques described in FKM-Guide-

line, the endurance limit can be estimated by the following

equations (these equations and parameters were defined in

section 3, but are repeated here for convenience):

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1

for axial loading

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1

for bending loading

SS;t;E ¼
CSSS;s;E

Kt;f þ 1
Cs;R
� 1

for torsional loading,

where CS is the surface treatment factor, SS,r,E and SS,s,E

are the material fatigue strength for normal and shear

stresses, respectively, Kax,f, Kb,f, and Kt,f are the fatigue

notch factors for axial, bending, and torsional loading,

respectively, Cr,R and Cs,R are the roughness correction

factors for normal and shear stresses, respectively. The

surface treatment factor is equal to 1 for all loading

conditions because there was no surface treatment applied

to the component. The size effect correction factor is the

same for all three loading conditions and is given by the

following equation:

CD ¼
1� 0:7686 adð Þlog deff

7:5

� �

1� 0:7686 adð Þlog
deff;min

7:5

� 	

¼
1� 0:7686 0:3ð Þlog 25:5

7:5

� �

1� 0:7686 0:3ð Þlog 16
7:5

� � ¼ 0:949;

where deff is the net diameter at the notched section, ad and

deff,min are material constants defined by the FKM-

Guideline.

For axial loading, the material fatigue strength (SS,r,E)

can be estimated using the following equation:

SS;r;E ¼ Cr;ECDCRSt;u;std ¼ 0:45 0:949ð Þ 0:843ð Þ 1400ð Þ
¼ 504 MPa,

where Cr,E is the endurance limit modification factor based

on material type and is equal to 0.45 for the shaft in this

example. The roughness correction factor is calculated

based on a roughness value (Rz) of 12 lm and constants

(aR and St,u,min) from Table 9. The roughness value was

chosen to stay on the conservative side since it is the lower

limit of roughness values suggested by FKM-Guidelines

for a ground surface. The roughness correction factor is

defined as
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Cr;R ¼ 1� aRlog RZð Þlog
2CRCDSt;u;std

St;u;min

� �

Cr;R ¼ 1� 0:22ð Þlog 12ð Þlog
2 0:843ð Þ 0:949ð Þ 1400ð Þ

400

� �

¼ 0:823:

To calculate the fatigue notch factor (Kf), the first step is

to calculate the stress concentration factor. Based on the

analysis provided in the FKM-Guideline

Next, the relative stress gradient needs to be calcu-

lated. The relative stress gradient for axial loading is

given by

�GK;r rð Þ ¼ 2

r
1þ uð Þ ¼ 2

1:28
1þ uð Þ ¼ 1:825;

where

u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

¼ 1= 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:25=1:28
p

þ 2
� 	

¼ 0:168:

Next, the supporting factor or Kt/Kf ratio (nK,r(r)) is

calculated as

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ4

q

� 10� aGþ CRCDSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffi

1:25
4
p

� 10� 0:5þ 0:843ð Þ 0:939ð Þ 1400ð Þ=2700ð Þ

¼ 1:142:

The constants, aG and bG, in the above equation for nK,r are

based on the type of material. Finally, the fatigue notch

factor is determined based on the relationship between the

elastic stress concentration factor (Kt) and the supporting

factor (nK,r) as

Kax;f ¼
Kax;t

nK;r rð Þ ¼
2:598

1:142
¼ 2:275:

Therefore, the endurance limit at 106 cycles for this

component under axial loading is as follows:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1
¼ 1ð Þ 504ð Þ

2:275þ 1
0:823
� 1
¼ 202 MPa:

For bending loading, the material fatigue strength

(SS,r,E) can be estimated using the following equa-

tion:

SS;r;E ¼ Cr;ECDCRSt;u;std ¼ 0:45 0:949ð Þ 0:843ð Þ 1400ð Þ

¼ 504:

The roughness correction factor is calculated based on a

roughness value (Rz) of 12 lm and constants (aR and

St,u,min) from Table 9. The roughness correction factor is

defined as

Cr;R ¼ 1� aR log RZð Þ log
2CRCDSt;u;std

St;u;min

� �

Cr;R ¼ 1� 0:22ð Þ log 12ð Þ log
2 0:843ð Þ 0:949ð Þ 1400ð Þ

400

� �

¼ 0:823:

To calculate the fatigue notch factor (Kf), the first step

is to calculate the stress concentration factor. Based on

the analysis provided in the FKM-Guideline

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:22 r=t
� �

þ 2:74 r=d
� �

1þ 2 r=d
� �� �2

q

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:22 1:28=1:25

� 	

þ 2:74 1:28=25:5

� 	

1þ 2 1:28=25:5

� 	� 	2
r ¼ 2:598:

Kb;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2 r=t
� �

þ 5:5 r=d
� �

1þ 2 r=d
� �� �2

q

Kb;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:2 1:28=1:25

� 	

þ 5:5 1:28=25:5

� 	

1þ 2 1:28=25:5

� 	� 	2
r ¼ 2:362:
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Next, the relative stress gradient needs to be calculated. For

bending loading, it is also necessary to calculate a relative

stress gradient based on the net diameter in addition to the

relative stress gradient based on the notch radius. The relative

stress gradient for bending loading based on notch radius

(GK,r(r)) and net diameter (GK,r(d)) are given by

�GK;r rð Þ ¼ 2

r
1þ uð Þ ¼ 2

1:28
1þ uð Þ ¼ 1:825

�GK;r dð Þ ¼ 2

d
¼ 2

25:5
¼ 0:078;

where

u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

¼ 1= 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:25=1:28
p

þ 2
� 	

¼ 0:168:

Next, the supporting factors based on notch radius

(nK,r(r)) and net diameter (nK,r(d)) are calculated as

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ4

q

� 10� aGþ CRCDSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffi

1:25
4
p

� 10� 0:5þ 0:843ð Þ 0:939ð Þ 1400ð Þ=2700ð Þ

¼ 1:142

nK;r dð Þ ¼ 1þ �GK;r dð Þ � 10� aG�0:5þ CRCDSt;u;stdð Þ=bGð Þ

nK;r dð Þ ¼ 1þ 0:078ð Þ � 10� 0:5�0:5þ 0:843ð Þ 0:939ð Þ 1400ð Þ=2700ð Þ

¼ 1:030:

Finally, the fatigue notch factor is determined based on

the relationship between the elastic stress concentration

factor (Kt) and the supporting factors as seen below

Kb;f ¼
Kb;t

nK;r rð Þ nK;r dð Þ ¼
2:362

1:142ð Þ 1:030ð Þ ¼ 2:008:

Therefore, the endurance limit at 106 cycles for this

component under bending loading is as follows:

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1
¼ 1ð Þ 504ð Þ

2:008þ 1
0:823
� 1
¼ 227 MPa

For torsional loading, the material fatigue strength in shear

(SS,s,E) can be estimated using the following equation:

SS;s;E ¼ CsSS;r;E ¼ CsCr;ECDCRSt;u;std

SS;s;E ¼ 0:577 0:45ð Þ 0:949ð Þ 0:843ð Þ 1400ð Þ ¼ 291 MPa,

where Cs is the shear stress correction factor based on

von Mises criterion. The roughness correction factor is

calculated based on a roughness value (Rz) of 12 lm and

constants (aR and St,u,min) from Table 9. The roughness

correction factor of torsion loading is different than

that of the for the axial or bending loading and is

defined as

Cs;R ¼ 1� CsaR log RZð Þ log
2CRCDSt;u;std

St;u;min

� �

Cs;R ¼ 1� 0:577ð Þ 0:22ð Þ log 12ð Þ

� log
2 0:843ð Þ 0:949ð Þ 1400ð Þ

400

� �

¼ 0:898:

To calculate the fatigue notch factor (Kf), the first

step is to calculate the stress concentration factor.

Based on the analysis provided in the FKM-

Guideline

Next, the relative stress gradient needs to be calculated.

For torsional loading, it is also necessary to calculate a

relative stress gradient based on the net diameter in addi-

tion to the relative stress gradient based on the notch

radius. The relative stress gradient for torsion loading

based on notch radius (GK,s(r)) and net diameter (GK,s(d))

are given by

�GK;s rð Þ ¼ 1

r
¼ 1

1:28
¼ 0:781

�GK;s dð Þ ¼ 2

d
¼ 2

25:5
¼ 0:078:

Next, the supporting factors based on notch radius

(nK,s(r)) and net diameter (nK,s(d)) are calculated as

Kt;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:7 r=t
� �

þ 20:6 r=d
� �

1þ 2 r=d
� �� �2

q

Kt;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:7 1:28=1:25

� 	

þ 20:6 1:28=25:5

� 	

1þ 2 1:28=25:5

� 	� 	2
r ¼ 1:713:
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nK;s rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;s rð Þ
q

� 10� aGþCs;ECRCDSt;u;std=bGð Þ

nK;s rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi

0:781
p

� 10� 0:5þ 0:577ð Þ 0:843ð Þ 0:949ð Þ 1400ð Þ=2700ð Þ

¼ 1:161

nK;s dð Þ ¼ 1þ �GK;s dð Þ � 10� aG�0:5þ CRCDSt;u;stdð Þ=bGð Þ

nK;s dð Þ ¼ 1þ 0:078ð Þ � 10� 0:5�0:5þ 0:843ð Þ 0:949ð Þ 1400ð Þ=2700ð Þ

¼ 1:045:

Note the calculations of the supporting factors and the

relative stress gradients are different for torsional loading

compared to axial and bending loading. Finally, the fatigue

notch factor is determined based on the relationship

between the elastic stress concentration factor and the

supporting factors as seen below

Kt;f ¼
Kt;t

nK;s rð Þ nK;s dð Þ ¼
1:713

1:161ð Þ 1:045ð Þ ¼ 1:411:

Therefore, the endurance limit at 106 cycles for this

component under torsional loading is as follows:

SS;t;E ¼
CSSS;s;E

Kt;f þ 1
Cr;R
� 1
¼ 1ð Þ 291ð Þ

1:411þ 1
0:898
� 1
¼ 191 MPa:

See Table 13 for summary of calculations.

Example 2 [15]

A hot-rolled notched component made of SAE 1005

(Su = 321 MPa) consists of a plate with a center hole of

r = 2.0 mm. As shown in Fig. 26, the plate has a width of

B = 16 mm and a thickness of t = 5 mm. The elastic

stress concentration factor of Kax,t = 2.4 due to tension

was calculated based on the geometric ratio. Assume that

the surface was ground and polished with a mirror finish

(i.e., Rz = 0). Fatigue tests with cyclic axial loading on the

hot-rolled unnotched plates of the same material were

conducted to generate a baseline S–N curve that is defined

by the following equation:

Sa ¼ S0f 2Nfð Þb¼ 886 2Nfð Þ�0:14;

where S0f is the fatigue strength coefficient and b is the

slope. Based on Morrow’s mean stress correction, deter-

mine the fatigue life of this notched plate if it is subjected

to cyclic axial loading varying from Pmax = ? 8 kN to

Pmin = �6 kN.

The alternating stress (Sa) and mean stress (Sm) applied

to the component are calculated based on the maximum

and minimum loading

Smax ¼
Pmax

Anet

¼ 8000

16� 4ð Þ 5ð Þ ¼ 133 MPa

Smin ¼
Pmin

Anet

¼ �6000

16� 4ð Þ 5ð Þ ¼ �100 MPa

Sa ¼
Smax � Sminð Þ

2
¼ 133� �100ð Þ

2
¼ 117 MPa

Sm ¼
Smax þ Sminð Þ

2
¼ 133þ �100ð Þ

2
¼ 16:7 MPa:

An equivalent fully reversed stress amplitude can be

calculated based on Morrow’s equation

Sar ¼
Sa

1� Sm

S0
f

¼ 117

1� 16:7
886

¼ 119:

This equivalent stress can be used to estimate the fatigue

life based on the S–N curves for fully reversed loading (i.e.,

no mean stress)

Table 13 Side-by-side comparison for Example 1

Parameter North American FKM

Elastic stress concentration factor

Kax,t 2.5 2.60

Kb,t 2.26 2.36

Kt,t 1.64 1.71

Fatigue notch factor

Kax,f 2.45 2.28

Kb,f 2.21 2.01

Kt,f 1.62 1.41

Size effect factor

KD/CD (tension) 1 0.949

KD/CD (bending) 0.868 0.949

KD/CD (torsion) 0.868 0.949

Reliability factor

CR 0.843 0.843

Surface roughness factor

KS/Cr,R (tension) 0.85 0.823

KS/Cr,R (bending) 0.85 0.823

KS/Cr,R (torsion) 0.85 0.898

Endurance limit at 106 cycles,

MPa

Sf (tension) 174 202

Sf (bending) 197 227

Sf (torsion) 156 191
Fig. 26 Geometry of notched plate in Example 2
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Solution (North American)

The endurance limit (at 106 cycles) for fully reversed

loading is calculated based on the equation given for the

S–N curve

Sf ¼ 886 2� 106
� ��0:14¼ 116 MPa:

Next, the fatigue notch factor needs to be calculated

using Peterson’s equation based on the stress concentration

factor (Kax,t) and notch sensitivity (q)

Kax;f ¼ 1þ Kax;t � 1
� �

q ¼ 1þ 2:4� 1ð Þ 0:68ð Þ ¼ 1:952;

where q was derived from an empirical notch sensitivity

curve based on an ultimate strength of 321 MPa and a

notch radius of 2 mm. Now the fatigue strength of the

notched part under fully reversed loading (i.e., no mean

stress) can be estimated

Sf;notched ¼
Sf

Kax;f
¼ 116

1:952
¼ 59 MPa:

Figure 27 shows the S–N curves for the notched part and

the unnotched part under fully reversed loading based on

Collin’s approach.

The curves in Fig. 27 were generated by connecting a

straight line from S0f at 1 reversal to the fatigue strengths of

the notched and unnotched parts. Now the slope (b0) of the

S–N curve for the notched component can be calculated

b0 ¼ log 59ð Þ � log 886ð Þ
log 2� 106ð Þ � log 1ð Þ ¼ �0:186:

This results in the following stress-life equation for the

notched component under fully reversed loading, which is

valid between 1 and 2(106) reversals

Sa ¼ 886 2Nfð Þ�0:186

Based on Morrow’s equation

Sa ¼ S0f � Sm

� �

2Nfð Þb
0

therefore, the fatigue life of the notched component

2Nf ¼
Sa

S0f � Sm

� �

" # 1
b0

¼ 117

886� 16:7ð Þ


 � 1
�0:186

¼ 48; 200 Reversals:

This results in a fatigue life of 24,100 cycles.

Solution (FKM)

Using the analysis techniques described in FKM-Guide-

line, the endurance limit can be estimated by the following

equation:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1

for axial loading,

where CS is the surface treatment factor, SS,r,E is the

material fatigue strength for normal stress, Kax,f is the

fatigue notch factor, Cr,R is the roughness correction factor

for normal stress. The surface treatment factor (CS) is equal

to 1 because there was no surface treatment applied to the

component. The roughness correction factor (Cr,R) is equal

to one since the surface was ground and polished to a

mirror finish.

For axial loading, the material fatigue strength (SS,r,E)

can be estimated using the following equation:

SS;r;E ¼ Cr;ECDCRSt;u;std ¼ 0:45 1ð Þ 0:843ð Þ 321ð Þ
¼ 122 MPa,

where Cr,E is the endurance limit modification factor based

on material type and is equal to 0.45 for the component in

this example. The size effect correction factor (CD) is

assumed to be equal to 1. To calculate the fatigue notch

factor (Kf), the first step is to calculate the stress

concentration factor. The elastic stress concentration

factor for a circular hole in a plate is as follows:

Kax;t ¼ 3� 3:13
2r

B

� �

þ 3:66
2r

B

� �2

�1:53
2r

B

� �3

Kax;t ¼ 3� 3:13
2 2ð Þ
16

� �

þ 3:66
2 2ð Þ
16

� �2

�1:53
2 2ð Þ
16

� �3

¼ 2:422:

Next, the relative stress gradient needs to be calculated.

The relative stress gradient for axial loading of a plate with

a center hole is given by

�GK;r rð Þ ¼ 2:3

r
¼ 2:3

2
¼ 1:15:

Next, the supporting factor or Kt/Kf ratio (nK,r(r)) is

calculated
Fig. 27 S–N curves for notched and unnotched components under

fully reversed loading
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nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ4

q

� 10� aGþ CRCDSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffi

1:15
4
p

� 10� 0:5þ 0:843ð Þ 1ð Þ 321ð Þ=2700ð Þ

¼ 1:260;

where aG and bG, are material constants. Finally, the

fatigue notch factor is determined based on the relationship

between the elastic stress concentration factor (Kt) and the

supporting factor (nK,r)

Kax;f ¼
Kax;t

nK;r rð Þ ¼
2:422

1:260
¼ 1:922:

Therefore, the endurance limit at 106 cycles for this

notched component under fully reversed axial loading is as

follows:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1
¼ 1ð Þ 122ð Þ

1:922þ 1
1
� 1
¼ 63 MPa:

FKM-Guidelines define slope factors (k) which are the

negative inverse of the S–N slope (b). For the steel

component described in this example, k = 5. This results

in the following stress-life equation for the notched

component under fully reversed loading, which is valid

from &104 to 106 cycles

Sa ¼ 1147 2Nfð Þ�1=5:

Based on Morrow’s equation

2Nf ¼
Sa

S0f � Sm

� �

" #�k

¼ 117

1147� 16:7ð Þ


 ��5

¼ 84; 200 Reversals:

Therefore, the component should last 42,100 cycles.

Figure 28 shows a plot of the S–N curves for fully reversed

loading of the notched component described in this example.

The figure includes a horizontal line at the equivalent fully

reversed stress amplitude (Sar = 119 MPa). This line inter-

sects the S–N curves at the cycles to failure determined in the

two solution sets in this example. This figure illustrates how

close the two solutions are to each other.

Example 3 [15]

An axle shaft was made of SAE 1050 steel with an ultimate

strength of 690 MPa. The entire shaft was heat-treated to a

Brinell hardness of 300 HB except for the shaft hub end.

See Fig. 29 for geometry and dimensions of the hub end

and spline end of the shaft. The pilot radius and the spline

end were machined to meet the dimensional specification.

The elastic stress concentration factors for the rotor pilot

radius in bending and the spline end in torsion are 4.01 and

1.16, respectively. The gross axle weight rating (GAWR) is

15 kN and the static loaded radius of the tire (SLR) is

358 mm. The wheel base (L) is 3330 mm and the C.G.

height (H) is 625 mm.

According to an axle manufacturer’s design manual, the

axle shaft should have the capability of resisting a cen-

trifugal force of 0.9 G due to vehicle cornering for 106

stress cycles. The shafts should also be designed for the

maximum slip torque levels for 8000 cycles.

Vehicle cornering induces a bending moment and an

axial force on the flange end of the axle shaft. The bending

Fig. 28 S–N curves for fully reversed loading of a notched

component Fig. 29 Axle shaft geometry and dimensions [15]
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moment and axial forces due to cornering are calculated

from the following equations:

M ¼ 0:9
GAWR

2

� �

SLR ¼ 0:9
15; 000

2

� �

0:358ð Þ

¼ 2417 Nm

P ¼ �0:9
GAWR

2

� �

¼ �0:9
15; 000

2

� �

¼ �6750 N:

Because the shaft is rotating, the bending stress at the

rotor will cycle from tension to compression (i.e., fully

reversed bending stress). In addition, vehicle cornering

induces a constant compressive axial load on the rotor pilot

(i.e., zero load amplitude). Therefore, the axial load will

cause a compressive mean stress and bending load will

cause a fully reversed normal stress. The stress amplitude

due to cyclic bending and the mean stress due to the

compressive axial load are

Sa ¼
32Ma

pd3
¼ 32 2417ð Þ 1000ð Þ

p 78:5ð Þ3
¼ 50:9 MPa

Sm ¼
4Pm

pd2
¼ 4 �6750ð Þ

p 78:5ð Þ2
¼ �1:39 MPa:

Because of the compressive mean stress on the pilot

radius, it is conservative to consider the fully reversed

nominal bending stress (±50.9 MPa) acting alone in this

fatigue analysis. As a result, the axial loading will be

ignored in the following analysis.

The maximum slip torque for each axle shaft is calcu-

lated as

Tr;max ¼
l GAWRð Þ

1� lH

L

SLRð Þ 0:5ð Þ

¼ 0:9ð Þ 15; 000ð Þ
1� 0:9ð Þ 0:625ð Þ

3:33

0:358ð Þ 0:5ð Þ ¼ 2908 Nm,

where l is the coefficient of friction for dry pavement and

is equal to 0.9. The design criteria for the shaft in torsion

requires that this torsion load is applied cyclically. The

nominal shear stress amplitude is obtained

Sa ¼
16Ta

pd3
¼ 16 2908ð Þ 1000ð Þ

p 29:7ð Þ3
¼ 565 MPa:

Based on the given information, determine if the shaft

will survive

1. Cyclic bending loading for 106 cycles.

2. Cyclic torsional loading for 8000 cycles.

Solution (North American)

To determine whether the shaft subjected to alternating

bending stresses of ±50.9 MPa can survive 106 cycles, the

endurance limit must be estimated. This value can be

obtained as follows:

Se;bending ¼
Sb;EKLKsKdCR

Kf

;

where Sb,E is the material fatigue strength, KL is the loading

factor, Ks is the surface effect factor (effect of roughness

and surface treatment), Kd is the size effect factor, and CR

is the reliability factor. The parameter Sb,E is defined as

follows:

Sb;E ¼ 0:5St;u;std for St;u;std\1400 MPa

Sb;E ¼ 700 MPa for St;u;std� 1400 MPa,

where St,u,std is in units of MPa. Therefore, for component

with an ultimate tensile strength of 690 MPa

Sb;E ¼ 0:5St;u;std ¼ 0:5 690ð Þ ¼ 345 MPa:

The loading factor (KL) is equal to 1 for bending.

Because no reliability requirement is given, it is assumed

that a median value (i.e., a reliability of 50%) is adequate

meaning CR = 1. The correction factor for surface effects

resulting from a machining procedure is as follows:

KS ¼ 4:51 Suð Þ�0:265¼ 4:51 690ð Þ�0:265¼ 0:798:

The size effect factor is given by the following equation:

Kd ¼ 1:189 dð Þ�0:097¼ 1:189 78:5ð Þ�0:097¼ 0:779:

Next, the fatigue notch factor needs to be calculated

using Peterson’s equation based on the stress concentration

factor (Kb,t) and notch sensitivity (q), where q is derived

from an empirical equation for notch sensitivity as follows:

q ¼ 1

1þ a
r

¼ 1

1þ
0:254 2079

St;u;std

� 	1:8

r

¼ 1

1þ 0:254 2079
690ð Þ

1:8

1

¼ 0:844

therefore,

Kb;f ¼ 1þ Kb;t � 1
� �

q ¼ 1þ 4:01� 1ð Þ0:844 ¼ 3:54:

Now the endurance limit of the notched part under fully

reversed loading (i.e., no mean stress) can be estimated

Se;bending ¼
Sb;EKLKsKdCR

Kf

¼ 345 1ð Þ 0:798ð Þ 0:779ð Þ 1ð Þ
3:54

¼ 56:9 MPa:

Because the alternating bending stress (50.9 MPa) is

lower than the endurance limit (56.9 MPa), the shaft

should survive the bending loading for 106 cycles.

To determine whether the shaft subjected to alternating

torsional stresses of ±565 MPa can survive 8000 cycles,

first estimate the endurance limit as follows:

Se;torsion ¼
Sb;EKLKsKdCR

Kf

:
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Because the shaft is heat-treated at the spline end, the

ultimate strength is different compared to the ultimate

strength of the base material. The material fatigue strength

of the spline end of the shaft can be estimated as

Sb;E ¼ 0:5St;u;std ¼ 0:5 3:45 300ð Þð Þ ¼ 518 MPa:

The loading factor for torsion is CL = 0.58. Because no

reliability requirement is given, it is assumed that CR = 1.

The correction factor for surface effects resulting from a

machining procedure is as follows:

KS ¼ 4:51 Suð Þ�0:265¼ 4:51 1035ð Þ�0:265¼ 0:717:

The size effect factor for the spline end is

Kd ¼ 1:189 dð Þ�0:097¼ 1:189 29:7ð Þ�0:097¼ 0:856:

Next, the fatigue notch factor needs to be calculated

using Peterson’s equation based on the stress concentration

factor (Kb,t) and notch sensitivity (q), where q is derived

from an empirical equation for notch sensitivity as follows:

q ¼ 1

1þ a
r

¼ 1

1þ
0:254 2079

St;u;std

� 	1:8

r

¼ 1

1þ 0:254 2079
1035ð Þ

1:8

1

¼ 0:992

therefore,

Kt;f ¼ 1þ Kt;t � 1
� �

q ¼ 1þ 1:16� 1ð Þ0:992 ¼ 1:16:

Now the endurance limit of the notched part under fully

reversed torsion loading (i.e., no mean stress) can be

estimated

Se;torsion ¼
Sb;EKLKsKdCR

Kf

¼ 518 0:58ð Þ 0:717ð Þ 0:856ð Þ 1ð Þ
1:16

¼ 159 MPa:

Using the Heywood model for S–N curves for notched

components, the fatigue strength at 103 cycles can be estimated

S1000 ¼
0:9SUSCR

Kf

;

where SUS is the ultimate strength in shear. For steels

SUS ¼ 0:8St;u;std ¼ 0:8 1035ð Þ ¼ 827 MPa:

The fatigue notch factor at 103 cycles (Kf
0) can be found

from the empirical relationship between Kf and Kf
0. For

steel with St,u,std = 1035 MPa

q1000 ¼
K 0t;f � 1

Kt;f � 1
¼ 0:384

therefore

K 0t;f ¼ 1þ Kt;f � 1
� �

q1000 ¼ 1þ 1:16� 1ð Þ0:384 ¼ 1:06:

Based on the Heywood model the fatigue strength at 103

cycles is

S1000 ¼
0:9SUSCR

K 0f
¼ 0:9 827ð Þ 1ð Þ

1:06ð Þ ¼ 702 MPa:

After both S1000 and Se,torsion have been determined, they

can be used to determine the number of cycles the shaft

will last under Sa = 565 MPa. Based on fatigue strengths

calculated at 106 and 103 cycles

log 103ð Þ � log 106
� �

log 702ð Þ � log 153ð Þ ¼
log 103ð Þ � log Nfð Þ

log 702ð Þ � log 565ð Þ :

Solving for Nf gives 2,680 cycles which is\8000 cycle

requirement. This means the spline area will require

redesigning.

Solution (FKM)

FKM-Guideline gives the following equations to estimate

the endurance limit:

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1

for bending loading

SS;t;E ¼
CSSS;s;E

Kt;f þ 1
Cs;R
� 1

for torsional loading,

where CS is the surface treatment factor, SS,r,E and SS,s,E

are the material fatigue strength for normal and shear

stresses, respectively, Kb,f and Kt,f are the fatigue notch

factors for bending and torsional loading, respectively, Cr,R

and Cs,R are the roughness correction factors for normal

and shear stresses, respectively. The surface treatment

factor (CS) is equal to 1 for all loading conditions because

there was no surface treatment applied to the component.

For bending loading, the material fatigue strength

(SS,r,E) can be estimated using the following equation:

SS;r;E ¼ Cr;ECDCRSt;u;std;

where Cr,E is the endurance limit modification factor and is

equal to 0.45 for the shaft in this example. The size effect

factor for the rotor pilot end of the shaft is

CD ¼
1� 0:7686 adð Þlog deff

7:5

� �

1� 0:7686 adð Þlog
deff;min

7:5

� 	

¼
1� 0:7686 0:3ð Þlog 78:5

7:5

� �

1� 0:7686 0:3ð Þlog 16
7:5

� � ¼ 0:828:

Because the analysis in FKM-Guideline is based on an

ultimate strength with a reliability of 97.5%, CR = 0.843.

Therefore, the estimated material fatigue strength is

SS;r;E ¼ Cr;ECDCRSt;u;std ¼ 0:45 0:828ð Þ 0:843ð Þ 690ð Þ
¼ 217 MPa:

The roughness correction factor is calculated based on a

roughness value of Rz = 100 lm and constants (aR and
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St,u,min) from Table 9. The roughness value was chosen

since it is the lower limit of roughness values suggested by

FKM-Guidelines for a machined surface. The roughness

correction factor is defined as

Cr;R ¼ 1� aRlog RZð Þlog
2CRCDSt;u;std

St;u;min

� �

Cr;R ¼ 1� 0:22ð Þlog 100ð Þlog
2 0:843ð Þ 0:828ð Þ 690ð Þ

400

� �

¼ 0:832:

To calculate the fatigue notch factor (Kf), the first step is

to calculate the stress concentration factor. Based on the

analysis provided in the FKM-Guideline

Next, the relative stress gradient needs to be calculated. For

bending loading, it is also necessary to calculate a relative

stress gradient based on the net diameter in addition to the

relative stress gradient based on the notch radius. The relative

stress gradient for bending loading based on notch radius

(GK,r(r)) and net diameter (GK,r(d)) are given by

�GK;r rð Þ ¼ 2:3

r
1þ uð Þ ¼ 2:3

1
1þ uð Þ ¼ 2:455

�GK;r dð Þ ¼ 2

d
¼ 2

78:5
¼ 0:025;

where

u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

¼ 1= 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:25=1:28
p

þ 2
� 	

¼ 0:068:

Next, the supporting factors based on notch radius

(nK,r(r)) and net diameter (nK,r(d)) are calculated as

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ4

q

� 10� aGþ CRCDSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffi

1:25
4
p

� 10� 0:5þ 0:843ð Þ 0:828ð Þ 690ð Þ=2700ð Þ

¼ 1:263

nK;r dð Þ ¼ 1þ �GK;r dð Þ � 10� aGþ CRCDSt;u;stdð Þ=bGð Þ

nK;r dð Þ ¼ 1þ 0:078ð Þ � 10� 0:5þ 0:843ð Þ 0:828ð Þ 690ð Þ=2700ð Þ

¼ 1:017:

Finally, the fatigue notch factor is determined based on

the relationship between the elastic stress concentration

factor and the supporting factors as seen below

Kb;f ¼
Kb;t

nK;r rð Þ nK;r dð Þ ¼
3:152

1:263ð Þ 1:017ð Þ ¼ 2:455:

Therefore, the endurance limit at 106 cycles for this

component under bending loading is as follows:

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1
¼ 1ð Þ 217ð Þ

2:455þ 1
0:832
� 1
¼ 82 MPa:

Because the alternating bending stress (50.9 MPa) is

lower than the endurance limit (82 MPa), the shaft should

survive the bending loading for 106 cycles.

For torsional loading, the material fatigue strength in

shear (SS,s,E) can be estimated using the following

equation:

SS;s;E ¼ CsSS;r;E ¼ CsCr;ECDCRSt;u;std;

where Cs is the shear stress correction factor based on von

Mises criterion. The size effect factor for the spline end of

the shaft is

CD ¼
1� 0:7686 adð Þ log deff

7:5

� �

1� 0:7686 adð Þ log
deff;min

7:5

� 	

¼
1� 0:7686 0:3ð Þ log 29:7

7:5

� �

1� 0:7686 0:3ð Þ log 16
7:5

� �

¼ 0:933:

Therefore, the material fatigue strength in shear is

SS;s;E ¼ 0:577 0:45ð Þ 0:933ð Þ 0:843ð Þ 3:45ð Þ 300ð Þ
¼ 211 MPa:

The roughness correction factor is calculated based on a

roughness value (Rz) of 100 lm and constants (aR and

St,u,min) from Table 9

Kb;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:62 r=t
� �

þ 11:6 r=d
� �

1þ 2 r=d
� �� �2þ0:2 r=t

� �3 d=D

� 	

r

Kb;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:62 1=10:25

� 	

þ 11:6 1=78:5

� 	

1þ 2 1=78:5

� 	� 	2

þ0:2 1=10:25

� 	3
78:5=99

� 	

r

Kb;t ¼ 3:152:
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Cs;R ¼ 1� CsaRlog RZð Þlog
2CsCRCDSt;u;std

St;u;min

� �

Cs;R ¼ 1� 0:577ð Þ 0:22ð Þlog 12ð Þ

� log
2 0:577ð Þ 0:843ð Þ 0:933ð Þ 1035ð Þ

400

� �

¼ 0:845:

To calculate the fatigue notch factor (Kf), the first step is

to calculate the stress concentration factor. Based on the

analysis provided in the FKM-Guideline

Next, the relative stress gradient needs to be calculated. For

torsional loading, it is also necessary to calculate a relative

stress gradient based on the net diameter in addition to the

relative stress gradient based on the notch radius. The relative

stress gradient for torsion loading based on notch radius

(GK,s(r)) and net diameter (GK,s(d)) are given by

�GK;s rð Þ ¼ 1:15

r
¼ 1:15

6:3
¼ 0:183

�GK;s dð Þ ¼ 2

d
¼ 2

29:7
¼ 0:067:

Next, the supporting factors based on notch radius

(nK,s(r)) and net diameter (nK,s(d)) are calculated as

nK;s rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;s rð Þ
q

� 10� aGþCsCRCDSt;u;std=bGð Þ

nK;s rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi

0:781
p

� 10� 0:5þ 0:577ð Þ 0:843ð Þ 0:933ð Þ 1035ð Þ=2700ð Þ

¼ 1:092

nK;s dð Þ ¼ 1þ �GK;s dð Þ � 10� aGþ CsCRCDSt;u;stdð Þ=bGð Þ

nK;s dð Þ ¼ 1þ 0:078ð Þ � 10� 0:5þ 0:577ð Þ 0:843ð Þ 0:933ð Þ 1035ð Þ=2700ð Þ

¼ 1:045:

Note the calculations of the supporting factors and the

relative stress gradients are different for torsional loading

compared to axial and bending loading. Finally, the fatigue

notch factor is determined based on the relationship

between the elastic stress concentration factor (Kt) and

the supporting factors as

Kt;f ¼
Kt;t

nK;s rð Þ nK;s dð Þ ¼
1:153

1:092ð Þ 1:045ð Þ ¼ 1:012:

Therefore, the endurance limit at 106 cycles for this

component under torsional loading is as follows:

SS;t;E ¼
CSSS;s;E

Kt;f þ 1
Cr;R
� 1
¼ 1ð Þ 211ð Þ

1:012þ 1
0:845
� 1
¼ 177 MPa:

The endurance limit (SS,t,E) can now be used along with

the slope factor (k) to determine the fatigue strength at

8000 cycles. The slope factor for the given material

subjected to torsional loading is k = 8. The following

equation can be used to estimate the fatigue strength at

8000 cycles:

SS;t;Nf
¼ SS;t;E Nfð Þ�1=k

106ð Þ�1=k
¼ 177 8; 000ð Þ�1=8

106ð Þ�1=8
¼ 324 MPa:

The requirement of 565 MPa is[324 MPa, meaning the

spline end of the shaft will not last 8000 cycles of torsional

loading. This means the spline area will require redesigning.

Table 14 provides a side-by-side comparison of the different

solutions.

Table 14 Side-by-side comparison for Example 3

Parameter North American FKM

Elastic stress concentration factor

Kb,t 4.01 3.152

Kt,t 1.16 1.153

Fatigue notch factor

Kb,f 3.54 2.455

Kt,f 1.16 1.012

Size effect factor

KD/CD (bending) 0.779 0.828

KD/CD (torsion) 0.856 0.933

Reliability factor

CR 0.843 0.843

Surface roughness factor

KS/Cr,R (bending) 0.798 0.823

KS/Cr,R (torsion) 0.717 0.898

Endurance limit (at 106 cycles)

Sf (bending) 57 82

Sf (torsion) 159 177

Kt;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:4 r=t
� �

þ 38 r=d
� �

1þ 2 r=d
� �� �2þ r=t

� �2 d=D

� 	

r

Kt;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:4 6:3=1:65

� 	

þ 38 6:3=29:7

� 	

1þ 2 6:3=29:7

� 	� 	2

þ 6:3=1:65

� 	2
29:7=33

� 	

r

Kt;t ¼ 1:153:
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Example 4 [4]

A 1035 steel has a tensile strength of 70 ksi (483 MPa) and is

to be used for a component that sees 450�F (232 �C) in service.

The component is machined to a uniform diameter of 7.5 mm

and then polished to a mirror finish. Fatigue testing showed

that the mean material fatigue strength, SS,r,E, at room tem-

perature is 39 ksi (269 MPa). Estimate the temperature

modification factor (KTemp) and the endurance limit of the part

at 106 cycles subjected to cyclic bending loading at 450�F.

Solution (North American)

The temperature modification factor for endurance limit of

steel materials can be estimated as follows:

KTemp ¼ 0:975þ 0:432 10�3
� �

T � 0:115 10�5
� �

T2

þ 0:104 10�8
� �

T3 � 0:595 10�12
� �

T4;

where T is in units of �F. This equation, which is based on

ultimate strength, is the result of a fit to experimental data

for 21 different carbon and alloy steels. Therefore, the

following analysis assumes the temperature has the same

effect on the endurance limit (at 106 cycles) as the ultimate

strength. At 450�F, the temperature modification factor is

KTemp = 1.007. Next, endurance limit of the component at

106 cycles in a 450�F environment is calculated as follows:

Se ¼ KTempSS;r;E ¼ 1:007 269ð Þ ¼ 271 MPa:

Solution (FKM)

For the component in this example the temperature cor-

rection factor is calculated as

CE;T ¼ 1� 1:4� 10�3 T � 100ð Þ
¼ 1� 1:4� 10�3 232� 100ð Þ ¼ 0:815;

where T is in units of �C. Note this factor is specifically for the

endurance limit (at 106 cycles) and a separate factor would be

used for ultimate strength calculations. As the material fatigue

strength is already known it does not need to be estimated from

the ultimate tensile strength. However, the reliability factor

still needs to be applied when estimating the component

strength. Next, endurance limit of the component at 106 cycles

in a 450�F environment is calculated as follows:

SS;b;E ¼
CSSS;r;E

Kb;f þ 1
Cr;R
� 1
¼ CSCRCE;TSS;r;E

Kb;f þ 1
Cr;R
� 1

:

The fatigue notch factor is equal to 1 because the

component is smooth. The roughness factor is equal to 1

because the component was polished to a mirror finish. The

surface treatment factor also equals 1 because there was no

surface treatment applied. As a result, the above equation

reduces to

SS;b;E ¼ CRCE;TSS;r;E ¼ 0:843ð Þ 0:815ð Þ 269ð Þ ¼ 185 MPa:

Note that the North American analysis results in

increased fatigue strength due to elevated temperatures

and the FKM results in reduced fatigue strength. A side-by-

side comparison of the two correction factors KTemp and

CE,T is shown in Fig. 30.

Example 5 [3]

A filleted component is made of 2024-T4 aluminum alloy

(E = 72 GPa, m = 0.33, Su = 470 MPa, Sy = 330 MPa,

and SE = 190 MPa at 106 cycles). The dimensions of the

component are B = 56 mm, b = 50 mm, t = 3 mm, and

r = 3 mm (see Fig. 31 for geometry). The component has

a thickness of 10 mm. The component is subjected to a

tensile load ranging from minimum load of Pmin = 20 kN

to maximum load (Pmax) to be determined. Assuming

q = 0.95 and Kt = 1.9, determine the maximum load the

component can survive for 106 cycles.

In order to determine the maximum load the component

can take for 106 cycles, it is desired to work with stresses.

The maximum and minimum stresses for the component

are calculated as

Fig. 30 Side-by-side comparison of temperature correction factors

Fig. 31 Geometry of notched component in Example 5
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Smin ¼
Pmin

A
¼ 20; 000

0:05 0:01ð Þ ¼ 40 MPa

Smax ¼
Pmax

A
¼ Smin þ 2Sr;a;

where Smin is the minimum nominal stress, Smax is the

maximum nominal stress, and Sr,a is the nominal alter-

nating stress.

Solution (North American)

First, the fatigue notch factor needs to be calculated based

on Kt and q. The value for Kt was read from a curve based

on the geometry and loading. Therefore, the fatigue notch

factor is

Kf ¼ 1þ Kt � 1ð Þq ¼ 1þ 1:9� 1ð Þ0:95 ¼ 1:86:

The nominal fatigue strength of the component is then

calculated as

Se ¼
SE

Kf

¼ 190

1:86
¼ 102 MPa,

where SE is the material fatigue strength. The nominal

mean stress (Sr,m) of the component can be written as

Sr;m ¼ Smin þ Sr;a:

Gerber’s relation is shown below written in terms of

nominal stresses and can be used to determine a maximum

nominal alternating stress (Sr,a) given a minimum stress

and the nominal fatigue strength

Sr;a

Se

þ Sr;m

Su

� �2

¼ 1:

Substituting the above equation for mean stress gives

Sr;a

Se

þ Smin þ Sr;a

Su

� �2

¼ 1:

Solving the above equation for Sr,a results in

Sr,a = 94 MPa. Therefore, the maximum stress is given by

Smax ¼ Smin þ 2Sr;a ¼ 40þ 2 94ð Þ ¼ 228 MPa

therefore

Pmax ¼ SmaxA ¼ 228 106
� �

0:05ð Þ 0:01ð Þ ¼ 114 kN:

Solution (FKM)

The material fatigue strength (SS,r,E) can be estimated

using the following equation:

SS;r;E ¼ Cr;ECRSt;u;std ¼ 0:3 0:843ð Þ 470ð Þ ¼ 119 MPa,

where Cr,E is the endurance limit modification factor based

on material type and is equal to 0.3 for the component in

this example. Next, the elastic stress concentration factor

needs to be calculated as

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 r=t
� �

þ 5 r=b
� �

1þ 2 r=b
� �� �2

q

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 3=3

� 	

þ 5 3=50

� 	

1þ 2 3=50

� 	� 	2
r

¼ 2:068:

Next, the relative stress gradient needs to be calculated.

The relative stress gradient for axial loading of a shoulder

filleted component is given by

�GK;r rð Þ ¼ 2:3

r
1þ uð Þ ¼ 2:3

3
1þ uð Þ ¼ 0:894;

where

u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

¼ 1= 4
ffiffiffiffiffiffiffiffi

3=3
p

þ 2
� 	

¼ 0:167:

Next, the supporting factor or Kt/Kf ratio (nK,r(r)) is

calculated as

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ
q

� 10� aGþ CRSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi

0:894
p

� 10� 0:05þ 0:843ð Þ 470ð Þ=850ð Þ ¼ 1:288:

The constants, aG and bG, in the above equation for nK,r

are equal to 0.05 and 850, respectively. Finally, the fatigue

notch factor is determined based on the relationship

between the elastic stress concentration factor and the

supporting factor as seen below

Kax;f ¼
Kax;t

nK;r rð Þ ¼
2:068

1:288
¼ 1:606:

With the correction factors CS and Cr,R equal to one, the

nominal endurance limit at 106 cycles for this component

under axial loading is as follows:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1
¼ 1ð Þ 119ð Þ

1:606þ 1
1
� 1
¼ 74 MPa:

The nominal mean stress (Sr,m) of the component can be

written as

Sr;m ¼ Smin þ Sr;a:

The nominal alternating stress (Sr,a) can be determined

from the following equations:

Sr;ar ¼ 1þMrð Þ Sr;a þ Mr=3ð ÞSr;m

1þMr=3

¼ 1þMrð Þ
Sr;a þ Mr=3ð Þ Smin þ Sr;a

� �

1þMr=3

and

Mr ¼ aMSt;u þ bM;
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where Mr is the mean stress sensitivity factor and aM and

bM are material constants. The constants for the aluminum

material aM and bM are equal to 0.001 and -0.04,

respectively. Therefore, mean stress sensitivity factor is

Mr ¼ aMSt;u þ bM ¼ 0:001 0:843ð Þ 470ð Þ þ �0:04ð Þ
¼ 0:356:

When using this equation to solve for Sr,a, SS,ax,E is

substituted for Sr,ar. The solution for Sr,a is as follows:

Sr;a ¼
SS;ax;E

1þMrð Þ �
Mr=3
� �

Smin

1þMr=3

� 	 ¼ 50 MPa:

The maximum stress the component can take is

Smax ¼ Smin þ 2Sr;a ¼ 40þ 2 50ð Þ ¼ 140 MPa

therefore

Pmax ¼ SmaxA ¼ 140 106
� �

0:05ð Þ 0:01ð Þ ¼ 70 kN:

The equation used to calculate the nominal alternating

stress is only valid for a stress ratio of 0 \ R \ 0.5. After

calculating an alternating stress, the stress ratio should be

check to see if it is within the acceptable range. The stress

ratio based on the calculated nominal stress amplitude is

R ¼ Smin

Smax

¼ 40

140
¼ 0:29:

Therefore, the stress ratio is within the acceptable range

and solution is valid.

Alternatively, calculations can be done using the mean

material fatigue strength (SE) given in the example. The

estimated material fatigue strength (SS,r,E) based on the

mean material fatigue strength is

SS;r;E ¼ CRSE ¼ 0:843ð Þ 190ð Þ ¼ 160 MPa:

Next, the elastic stress concentration factor needs to be

calculated as

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 r=t
� �

þ 5 r=b
� �

1þ 2 r=b
� �� �2

q

Kax;t ¼ 1þ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 3=3

� 	

þ 5 3=50

� 	

1þ 2 3=50

� 	� 	2
r

¼ 2:068:

Next, the relative stress gradient needs to be calculated.

The relative stress gradient for axial loading is given by

�GK;r rð Þ ¼ 2:3

r
1þ uð Þ ¼ 2:3

3
1þ uð Þ ¼ 0:894;

where

u ¼ 1= 4
ffiffiffiffiffiffi

t=r
p

þ 2
� 	

¼ 1= 4
ffiffiffiffiffiffiffiffi

3=3
p

þ 2
� 	

¼ 0:167:

Next, the supporting factor or Kt/Kf ratio (nK,r(r)) is

calculated as

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�GK;r rð Þ
q

� 10� aGþ CRSt;u;stdð Þ=bGð Þ

nK;r rð Þ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffi

0:894
p

� 10� 0:05þ 0:843ð Þ 470ð Þ=850ð Þ ¼ 1:288:

The constants, aG and bG, in the above equation for nK,r

are equal to 0.05 and 850, respectively. Finally, the fatigue

notch factor is determined based on the relationship

between the elastic stress concentration factor and the

supporting factor as seen below

Kax;f ¼
Kax;t

nK;r rð Þ ¼
2:068

1:288
¼ 1:606:

With the correction factors CS and Cr,R equal to one, the

nominal endurance limit at 106 cycles for this component

under axial loading is as follows:

SS;ax;E ¼
CSSS;r;E

Kax;f þ 1
Cr;R
� 1
¼ 1ð Þ 160ð Þ

1:606þ 1
1
� 1
¼ 100 MPa:

The nominal mean stress (Sr,m) of the component can be

written as

Sr;m ¼ Smin þ Sr;a:

The nominal alternating stress (Sr,a) can be determined

from the following equations:

Sr;ar ¼ 1þMrð Þ Sr;a þ Mr=3ð ÞSr;m

1þMr=3

¼ 1þMrð Þ
Sr;a þ Mr=3ð Þ Smin þ Sr;a

� �

1þMr=3

and

Mr ¼ aMSt;u þ bM;

where Mr is the mean stress sensitivity factor and aM and

bM are material constants. The constants for the aluminum

material aM and bM are equal to 0.001 and �0.04,

respectively. Therefore, mean stress sensitivity factor is

Mr ¼ aMSt;u þ bM ¼ 0:001 0:843ð Þ 470ð Þ þ �0:04ð Þ
¼ 0:356:

When using this equation to solve for Sr,a, SS,ax,E is

substituted for Sr,ar. The solution for Sr,a is as follows:

Sr;a ¼
SS;ax;E

1þMrð Þ �
Mr=3
� �

Smin

1þMr=3

� 	 ¼ 69 MPa:

The maximum stress the component can take is

Smax ¼ Smin þ 2Sr;a ¼ 40þ 2 69ð Þ ¼ 178 MPa

and

Pmax ¼ SmaxA ¼ 178 106
� �

0:05ð Þ 0:01ð Þ ¼ 89 kN:
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Again, the equation used to calculate the nominal

alternating stress is only valid for a stress ratio of

0 \ R \ 0.5. The stress ratio based on the calculated

nominal stress amplitude is

R ¼ Smin

Smax

¼ 40

178
¼ 0:22:

Therefore, the stress ratio is within the acceptable range

and solution is valid. Using the mean material fatigue

strength instead of the mean ultimate tensile strength,

results in only a 19 kN difference. Table 15 provides a

side-by-side comparison of the different solutions.

Case Study 1 (Based on Data Given in [18]

Rolled 10B40 steel rods were forged by two manufacturers

to a diameter of 8 mm. The forged steel rods were heat-

treated to four hardness levels, 421, 327, 253, and 220 HB.

Manufacturer A represents a low-quality forging process

and Manufacturer B represents a high-quality forging

process. Reverse cantilever bending fatigue tests were

performed on the forged steel rods. The rods were tested

with an as-forged surface. Results from the fatigue testing

are shown in Table 16. The endurance limits for the forged

components at the different hardness levels were predicted

using traditional North American analysis techniques as

well as techniques described in the FKM-Guideline.

Results of predictions are also shown in Table 16.

Endurance Limit Prediction (North American)

The endurance limit was predicted using traditional anal-

ysis techniques as follows:

Se;bending ¼
3:45 HBCR

2
KSð Þ;

where CR = 0.843 based on a reliability of 97.5%, HB is

the Brinell hardness number, and KS is the surface cor-

rection factor. The surface correction factor (Ks) was taken

from Fig. 32. The various curves in this figure represent

different qualities of surface finish produced by different

types of manufacturing processes.

Endurance Limit Prediction (FKM)

The endurance limit was predicted using FKM analysis

techniques as follows:

SS;b;E ¼
CSCr;E3:45 HBCR

Kb;f þ 1
Cr;R
� 1

;

where CS = 1 because there was no surface treatment,

Cr,E = 0.40 is for the steel material used, CR = 0.843 is

based on a reliability of 97.5%, Kb,f = 1 because the

component was unnotched, and Cr,R was determined from

the following equation:

Table 16 Summary of experimental and estimated endurance limits for forged steel components (experimental data taken from [18])

Manufacturer Hardness, HB

Endurance limit at 106 cycles, MPa Surface correction factor

Experimental North American FKM North American (KS) FKM (Cr,R)

A 421 258 141 295 0.230 0.602

327 241 142 250 0.298 0.657

253 255 127 210 0.345 0.714

220 249 120 191 0.375 0.744

B 421 231 141 295 0.230 0.602

327 303 142 250 0.298 0.657

253 281 127 210 0.345 0.714

220 266 120 191 0.375 0.744

Table 15 Side-by-side comparison for Example 5

Parameter

North

American

FKM based

on Su

FKM based

on SE

Elastic stress

concentration factor

Kax,t 1.9 2.068 2.068

Fatigue notch factor

Kax,f 1.86 1.606 1.606

Reliability factor

CR 1 0.843 0.843

Maximum stress, MPa

Smax 228 140 178

Maximum load, kN

Pmax 114 70 89

Material endurance

limit at 106 cycles, MPa

SE 190 119 160

Component endurance

limit at 106 Cycles, MPa

SS,ax,E 102 74 100
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Cr;R ¼ 1� aRlog RZð Þlog
2 3:45ð Þ HBð ÞCR

St;u;min

� �

:

When calculating the roughness factor (Cr,R), a

roughness value of Rz = 200 lm was used as specified

by FKM-Guidelines. The constants aR and St,u,min for the

steel material used are 0.22 and 400 MPa, respectively.

Figure 33 shows a plot of the equation for roughness

correction factor (Cr,R) versus tensile strength for steel

components. The different lines on this figure represent

different values of Rz.

The endurance limits predicted using both analysis

techniques are plotted versus experimental cycles to failure

in Fig. 34. This figure also includes a 45� line representing

perfect agreement with experimental data. It can be seen in

Fig. 34 that the predictions based on FKM analysis have

better agreement with the experimental data. One expla-

nation for the large difference between the two sets of

predictions is that the surface correction factors (KS) from

traditional North American analysis are based on data

published in the 1930s and 1940s. Improvements in forging

and steel making technologies have made the correction

factors (KS) for forged surfaces overly conservative [18].

Case Study 2 [5]

The mean stress sensitivity factor model developed by

Schütz in 1967 is considered the most comprehensive

method to account for the mean stress effect on HCF life

and strength, which is applicable to various materials (such

as steels, steel castings, ductile irons, malleable cast irons,

gray cast iron, wrought aluminum alloys, and cast alumi-

num alloys) and to a broad range of mean stress or stress

ratio. Even though the mean stress sensitivity factor

method has been frequently used in European-based fati-

gue commercial software and engineering design codes

such as FKM-Guideline, it has not received a great deal of

attention worldwide. Although the FKM-Guideline pro-

vides extensive experimental test validation, very little

evidence from independent sources have illustrated the

validity of this method. The following study examines the

Schütz mean stress sensitivity factor model by comparing

to the Walker mean stress correction equation with the best

fitting parameters published for steels and aluminum

alloys.

The following comparisons of some of the available mean

stress correction models are based on experimental data [7].

The experimental data points (seen in Figs. 35–37) were

normalized in the vertical axis with the rar calculated based

on the life of that sample. In the horizontal axis, each mean

stress value was normalized with respect to Sut. This pro-

duces curves that are independent of fatigue life. These

figures were purposed as a snapshot of all the methods with

respect to experimental data. Figure 35 is an example of a

steel alloy. Figure 36 is an example of a chrome molly steel.

Figure 37 is an example of an aluminum alloy. These

examples, like most available data, have small mean stress

ranges.

The experimental data illustrated in Fig. 35 are sensitive

to compressive and tensile mean stresses. The Goodman

line is the conservative bound in the tensile region. The

SWT is also conservative in the tensile region and follows

the Goodman line for small tensile stresses. The Morrow

line passes through the middle of the data in the tensile and

Fig. 32 Surface correction factors for various surface conditions [17]

Fig. 33 Roughness correction factor versus ultimate tensile strength

for various roughness levels [11]
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compressive regions. For the stress range which contains

data for this material, the FKM, Walker and Wellinger

Dietmann lines are about the same.

The experimental data illustrated in Fig. 36 are insen-

sitive to mean stress. Most of the methods over correct for

positive mean stresses. The Walker, FKM (the Schütz

mean stress sensitivity factor model), and Wellinger Diet-

mann have the most agreement with experimental data. For

this material and tensile mean stresses, the Walker equation

produces the least conservative equally reversed stress

estimates. This means that the equally reversed stress

amplitude is punished the least for an increase in mean

stress.

The experimental data in Fig. 37 are bounded on the

conservative side by the Goodman line and on the non-

conservative side by the Morrow line. The SWT, Morrow,

and FKM (the Schütz mean stress sensitivity factor model)

perform similarly by creating good predictions for small to

moderate mean stresses.

From this study, it was concluded that the FKM method

can produce similar results as the Walker equation with the

best fitting parameters published for steels and aluminum

alloys. The Walker relationship was used as the method of

comparison because it has been proven to correlate to

experimental data well.

Fig. 34 Predicted endurance

limit versus experimental

endurance limit for forged steel

components (experimental data

taken from [18])

Fig. 35 AISI 4340 Steel [5]

Fig. 36 50CrMo4 Steel [5]

Fig. 37 2014-T6 Aluminum [5]
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Summary

According to FKM-Guideline, the empirical procedures to

generate the synthetic nominal S–N and the pseudo-re–N

curves have been introduced. These procedures are not

scientifically based but are simple and useful engineering

tools for generating the synthetic component stress-life

curves for various materials.

If the test data are not available, the ultimate strength of

a real component at a specific temperature with a survival

rate can be estimated based on an estimated strength value

of a standard smooth, polished round test specimens of

7.5 mm diameter with the correction factors for tempera-

ture, reliability, size, load, and stress. This estimation

process has been presented in section 2.

The endurance limit of a real component at a specific

temperature with a survival rate can be estimated based on

an estimated ultimate tensile strength value of a standard

smooth, polished round test specimens of 7.5 mm diameter

with the correction factors for temperature, reliability, size,

endurance limit in normal or shear stress, surface treat-

ment, roughness, and fatigue notch factor. This estimation

process has been described in section 3.

The stress field intensity theory has been used to explain

why the fatigue notch factor or fatigue strength reduction

factor is less than the elastic stress concentration factor.

There are three popular approaches (notch sensitivity factor

by Peterson and Neuber, relative stress gradient by Siebel

and Stieler, and FKM-Guideline by Haibach) to estimate

the fatigue notch factor, among which FKM-Guideline is

recommended by the authors.

The constant amplitude nominal stress-life approach and

the local pseudo-stress-life approach for a notched com-

ponent under fully reversed loading have been introduced

in section 4. Either one can be derived on a reference point,

the endurance limit at an endurance cycle limit, and a

suggested slope factor by FKM-Guideline.

The application of the Palmgren–Miner linear damage

rule to a component subjected to variable amplitude load-

ing over time has been discussed in section 5. It has been

shown that the critical damage value is a random variable

varying from 0.15 to 1.06. So for mechanical designs,

FKM-Guideline recommends DPM = 0.3 for steels, steel

castings, and aluminum alloys, while DPM = 1.0 for duc-

tile irons, gray cast irons, and malleable cast irons. Also for

electronic equipment designs, Steinberg suggests

DPM = 0.7.

The mean stress effect on the fatigue strength and lives

of a component has been addressed in section 6. Even

though there are numerous models developed to account

for the mean stress effect, five commonly used formulas

such as Goodman’s, Morrow’s, Smith–Watson–Topper’s,

Walker’s, and the one by FKM-Guideline were discussed.

According to the extensive studies [7] on experimental

fatigue data for steels, aluminum alloys and a titanium

alloy where the R ratio ranges from �2 to 0.45, Good-

man’s model for life predictions is highly inaccurate and

should not be used. Walker’s model gives the superior

results if an additional mean stress fitting parameter cWð Þ
is provided. Both Morrow’s and SWT’s models yield

reasonable life estimates for steels. SWT’s model is rec-

ommended for aluminum alloys. If there are no

experimental data available for materials or the R ratio is

beyond the range of the previous studies, FKM-Guideline

is recommended for use.
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