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Course Objectives

e To introduce the graduate students to finite element analysis
concepts, methods, and best practices in applications,

*To highlight solution techniques that will be useful in
research and industrial applications.
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Course 'Style’

This will be an applied course, meaning that you will learn how
to use computer programs for finite element analysis.

This course is meant to complement a theory based course in
which you would learn the mathematical foundations of finite
element analysis.

The more you put into the course, the more you will get out of
it. Computers software comes easy for some people, but are
more difficult for others. You will need to put in enough time
outside of class to make progress.
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Required Background

 Basic computer knowledge,
*basic course in stress analysis/materials,

egraduate standing.
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FEA Projects

 Use software to complete basic analysis types including:

basics of mesh building

linear static analysis

non-linear material analysis (small deformation)
non-linear material/structural analysis (large deformation)
mode shape, eigenvalue analysis

composite analysis

heat transfer analysis.
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Evaluation/Grades

Succinct written reports approximately every two weeks.

The content and format of the reports will be discussed in
class.

Final evaluation (TBD).
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What is FEA?

Finite Element Analysis is a technique in which a structure is
sub-divided into a (finite) number of small pieces (elements)
that are effectively like springs.

The springs can be

one-dimensional (rods, bars, beams),

two-dimensional (triangle or quadrilateral plates/shells),
three-dimensional (cubes, tetrahedrons), or

special purpose elements (e.g. connector elements).
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What is ‘FEA’ today?

Today, what is known as FEA is usually part of a ‘multi-physics’
simulation software package that can combine materials in

various phases and length scales with prescribed general
kinematic/dynamic behavior.
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The Spring Equation

To motivate our understanding of FEA, it is useful to think of a
one dimensional linear spring:

F =k Delta

where F is the force in the spring, k is the stiffness of the
spring, and Delta is the displacement of the spring.

(refer to notes on the board)
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The Spring Equation con't

The equation can be inverted to find displacement if the force
is specified:

Delta = F/k

(refer to notes on the board)
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General spring ‘element’

It is easy to imagine our spring that is fixed at one end, but
let’s generalize our spring so that both ends can move or
displace.

The ends of the spring are called ‘nodes’. The spring itself is
called the ‘element’.

(refer to notes on the board)
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Multiple Springs

Consider two springs with spring constants ki and k2 joined
together.

With these two springs, we have two ‘elements’ and three
nodes.

(refer to notes on the board)
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Assemble the stiffness matrix and
apply boundary conditions

(refer to notes on the board)
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Stiffness Matrix

The primary characteristics of a finite element are embodied in the
element stiffness matrix. For a structural finite element, the
stiffness matrix contains the geometric and material behavior
information that indicates the resistance of the element to
deformation when subjected to loading. Such deformation may
include axial, bending, shear, and torsional effects. For finite
elements used in nonstructural analyses, such as fluid flow and heat
transfer, the term stiffness matrix is also used, since the matrix
represents the resistance of the element to change when subjected
to external influences.



LINEAR SPRING AS A FINITE ELEMENT

A linear elastic spring i1s a mechanical device capable of supporting axial
loading only, and the elongation or contraction of the spring is directly
proportional to the applied axial load. The constant of proportionality
between deformation and load is referred to as the spring constant, spring
rate, or spring stiffness k, and has units of force per unit length. As an
elastic spring supports axial loading only, we select an element coordinate
system (also known as a local coordinate system) as an x axis oriented
along the length of the spring, as shown.
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(a) Linear spring element with nodes, nodal displacements, and nodal forces.
(b) Load-deflection curve.



Assuming that both the nodal displacements are zero when the spring is
undeformed, the net spring deformation is given by
0= U, — U,

and the resultant axial force in the spring is
J=ko=k(u, —uy)

For equilibrium,

fitf=0 o fi=—f,

Then, in terms of the applied nodal forces as
fy=—k(u,—uy

f,=k(u, —uy)

which can be expressed in matrix form as

k  —k|Jur| | Ah B
O ke

where

kel = [ L —k } Stiffness matrix for one spring element

is defined as the element stiffness matrix in the element coordinate system (or local
system), {u} is the column matrix (vector) of nodal displacements, and { f'} is the
column matrix (vector) of element nodal forces.




| uj , | kK —k
{fg}—[kﬁ]im} with [ke]_[_k k]

kown  F} = [K] {X} unknown

The equation shows that the element stiffness matrix for the linear spring element
is a2 X 2 matrix. This corresponds to the fact that the element exhibits two nodal
displacements (or degrees of freedom) and that the two displacements are not
independent (that is, the body is continuous and elastic).

Furthermore, the matrix is symmetric. This is a consequence of the symmetry of
the forces (equal and opposite to ensure equilibrium).

Also the matrix is singular and therefore not invertible. That is because the
problem as defined is incomplete and does not have a solution: boundary
conditions are required.



SYSTEM OF TWO SPRINGS

13 ky /3
(a) (b)

F b

o ®
.
= A
B
s
lad

(l:' + f(j)

(c) (d) (e)

These are internal forces



Writing the equations for each spring in matrix form:

Superscript refers to element

- - (1)

ki —k 4 Uy ]

_ | (1)
- kl kl - uz J .fz J
- - 2) ) [ 2 )

ke —k])ui | ]SS

_ @ | (2)
| kz k2 - us | J3

To begin assembling the equilibrium equations describing the behavior of the
system of two springs, the displacement compatibility conditions, which relate
element displacements to system displacements, are written as:

1 I 2 2
u{l) = Ul u(z) = Ug u(I} = Uz ”(2} = U3
And

(1)
therefore: ki —ki |} U _ 17
—ky ki U> (1)

J 2

b k] S
—k» k» U; o (2)

J 3

Here, we use the notation (/). to represent the force exerted on element j at node i.



Expand each equation in matrix form:

ar

-k, —k; 07 (U;) I
—k, ki 01 U f(? .

L 0 0O 0400 0

0 0 0 7(0) 02
0 k —k |10 98

L0 —ky ky 1UU, f(2)
L J 3 )

Summing member by member:
(1)
ko k0 (U S
|:—k1 ki + k2 —kz:“ U, } =1 /O + %

0 —k ko Us )
/3

Next, we refer to the free-body diagrams of each of the three nodes:

2
fA=r =R fY=r



Final form:

ki —k, 0 (U, F,
—ky ki +ky —k> U, = > (1)
0 —k» k- Us; I3

Where the stiffness matrix:

kq —k 0
[K] = |:_k1 ki + k> —k2:|

0 —k ko

Note that the system stiffness matrix is:

(1) symmetric, as is the case with all linear systems referred to orthogonal coordinate
systems;

(2) singular, since no constraints are applied to prevent rigid body motion of the
system;

(3) the system matrix is simply a superposition of the individual element stiffness
matrices with proper assignment of element nodal displacements and associated
stiffness coefficients to system nodal displacements.



FEA for multiple (many) elements { F} = [K ] : {U}
/ N\

Array of appiiec forces | Array of dsplacements { cne
(one %or each DOF) Matrix of for each DOF)
sufMhesses
(OOF x DOF)

{F } 15 “known™ (loads)

[K ] 15 “known” (geometry, matenal properties...elements)

{U} is to be determined (displacements)

This can be solved mathematically using a matnix inversion method

{Fi=[x] U} - }=[kI*{F}

(first nodal quantity)

Once the displacements {U} are known, then strains and stresses can be determined:
g = % (1-D ...more complicated for 2-D and 3-D strams)
c=E-¢

(o .
and FOS =— (second nodal quantities)
o




Example with Boundary Conditions

Consider the two element system as described before where Node 1 is attached to a
fixed support, yielding the displacement constraint U, = 0, k;= 50 Ib/in, k,= 75 Ib/in,
Fy=F,="75 1b for these conditions determine nodal displacements U, and Us;.

ulh uh ugzj e
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F'I fli]]
e . P . .
1 Fr_[_]u + fgz] 2 F, fgz] F,

(c) (d) (e)

Substituting the specified values into (1) we have:

50 -50 0
-50 125 -75 )
0 -75 175

Due to boundary condition




Example with Boundary Conditions

Because of the constraint of zero displacement at node 1, nodal force F'; becomes an
unknown reaction force. Formally, the first algebraic equation represented in this
matrix equation becomes:

and this is known as a constraint equation, as it represents the equilibrium condition
of a node at which the displacement is constrained. The second and third equations

become
125 757U, |75
=75 75 Us| |75
which can be solved to obtain U, = 3 in. and U; = 4 in. Note that the matrix
equations governing the unknown displacements are obtained by simply striking out
the first row and column of the 3 X 3 matrix system, since the constrained
displacement is zero (homogeneous). If the displacement boundary condition is not

equal to zero (nonhomogeneous) then this is not possible and the matrices need to be
manipulated differently (partitioning).



